
Adam Blank Winter 2017Lecture 15

CSE332
Data Structures and Parallelism

CSE 332: Data Structures and Parallelism

Analysis of Parallel
Programs

Outline

1 Parallel Primitives

2 Paralellism with Other Data Structures

3 Analyzing Parallel Algorithms

More Parallel Primes-ish 1

Largest Factors
Last time, we found the number of primes in a range. This time, let’s
find the largest factors for each number in an input array.

1 protected void compute() {
2 if (hi − lo <= CUTOFF) {
3 seqReplaceWithLargestFactor(arr, lo, hi);
4 return;
5 }
6
7 int mid = lo + (hi − lo) / 2;
8 LargestFactorTask left = new LargestFactorTask(arr, lo, mid);
9 LargestFactorTask right = new LargestFactorTask(arr, mid, hi);

10
11 left.fork();
12 right.compute();
13 left.join();
14 }

This problem was different than the previous ones. The goal was to apply
a function to every element of an array rather than to return a result.

Maps and Reductions 2

Reductions
Last time, we saw several problems of the form:
INPUT: An array
OUTPUT: A combination of the array by an associative operation
The general name for this type of problem is a reduction. Examples
include: max, min, has-a, first, count, sorted

Maps
We just saw a problem of the form:
INPUT: An array
OUTPUT: Apply a function to every element of that array
The general name for this type of problem is a map. You can do this
with any function, because the array elements are independent.

These two types of problems are “parallel primitives” in the same way
loops and if statements are “programming primitives”. Next lecture, we’ll
add two more primitives.

A Reduction 3

a0 a1 a2 a3 a4 a5 a6 a7
A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

a4 a5 a6 a7
A[4] A[5] A[6] A[7]

a6 a7
A[6] A[7]

a7
A[7]

a6
A[6]

a4 a5
A[4] A[5]

a5
A[5]

a4
A[4]

a0 a1 a2 a3
A[0] A[1] A[2] A[3]

a2 a3
A[2] A[3]

a3
A[3]

a2
A[2]

a0 a1
A[0] A[1]

a1
A[1]

a0
A[0]

+ +

+

+ +

+

+

A Map 4

a0 a1 a2 a3 a4 a5 a6 a7
A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

a4 a5 a6 a7
A[4] A[5] A[6] A[7]

a6 a7
A[6] A[7]

a7
A[7]

a6
A[6]

a4 a5
A[4] A[5]

a5
A[5]

a4
A[4]

a0 a1 a2 a3
A[0] A[1] A[2] A[3]

a2 a3
A[2] A[3]

a3
A[3]

a2
A[2]

a0 a1
A[0] A[1]

a1
A[1]

a0
A[0]

f (a0)
A[0]

f (a1)
A[1]

f (a2)
A[2]

f (a3)
A[3]

f (a4)
A[4]

f (a5)
A[5]

f (a6)
A[6]

f (a7)
A[7]

Google MapReduce and Hadoop 5

You may have heard of Googles MapReduce (or the open-source version
Hadoop).

Idea: Perform maps/reduces on data using many machines
The system takes care of distributing the data and managing fault
tolerance

You just write code to map one element and reduce elements to a
combined result

Separates how to do recursive divide-and-conquer from what
computation to perform

Old idea in higher-order functional programming transferred to
large-scale distributed computing

Complementary approach to declarative queries for databases

Parallelism on Other Data Structures 6

So far, we’ve only tried to apply parallelism to an Array (or, equivalently,
an ArrayList). What about the other data structures we know? In
particular, how does ForkJoin do on:

LinkedLists?

BinaryTrees?

(Balanced) BinaryTrees?

n-ary Trees?

Let’s think about this with our toy problem of “sum up all the elements
of the input”.

Parallelism on LinkedLists 7

We wrote code that treated the array like a LinkedList last lecture.
1 compute() {
2 if (not the end of the list) {
3 fork a thread to do the rest of the elements;
4 }
5
6 do my work
7
8 join with the thread after me
9 }

The only gain we’re going to get with LinkedLists is if the map
function is very expensive. Then we’ll at least get most of those going at
once.

Naturally, as with standard algorithms on unbalanced trees, since they
degenerate to linked lists, we have the same problem.

Parallelism on Balanced Trees 8

The idea here is to divide-and-conquer each child instead of array
sub-ranges:

1 compute() {
2 left.fork(); // Handles the entire left subtree
3 right.compute(); // Handles the entire right subtree
4
5 return left.join() + rightResult;
6 }

But what about the sequential cut-off?
Either store the number of nodes in each subtree or approximate it with
the height

Consider the MAXIMUM problem from a few lectures ago. The best
we could do in sequential-land was Ω(n), but with parallelism, we can
find the maximum element in Θ(lgn) time (with enough processors. . .)!

Work and Span 9

With sequential algorithms, we often considered T(n) (the runtime of the
algorithm). Now, we’ll consider a more general notion:

Let TP(n) be the runtime of an algorithm using P processors.

There are two important runtime quantities for a parallel algorithm:
How long it would take if it were fully sequential (work)
How long it would take if it were as parallel as possible (span)

Definition (Work)
We say work(n) = T1(n) = T(n) is the culmulative work that all
processors must complete.

Definition (Span)
We say span(n) = T∞(n) is the largest amount of work some processor
must complete.

Analyzing a Parallel Algorithm 10

For each “type” of tree, figure out work(−) and span(−) of findMin in
terms of the number of nodes, n.

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left), findMin(right));
7 }

Degenerate Tree

1

2

3

4

Perfect Tree

20

30

40 50

60

70 80

Analyzing a Parallel Algorithm: Work of Degenerate Tree 11

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Degenerate Tree
1

2

3

4

To calculate work, we just do our standard analysis. First, we make a
recurrence:

work(n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n = 0O(1) if n = 1
work(0)+work(n−1)+O(1) otherwise

Solving this recurrence gives us:

work(n) = n∑
i=0

1 =Θ(n)

Analyzing a Parallel Algorithm: Span of Degenerate Tree 12

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Degenerate Tree
1

2

3

4

To calculate span, we assume all calls are in parallel. We look for the
longest dependence chain. We make a recurrence:

span(n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n = 0O(1) if n = 1
max(span(0) ,span(n−1))+O(1) otherwise

This ends up being the same recurrence as for work(−). Notice for the
degenerate tree work(n) = span(n). This proves our intution that we
don’t get much of a (any!) speed-up with parallelism for linked lists!

Analyzing a Parallel Algorithm: Work of Perfect Tree 13

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Perfect Tree
20

30

40 50

60

70 80

To calculate work, we just do our standard analysis. First, we make a
recurrence:

work(n) = ⎧⎪⎪⎨⎪⎪⎩
O(1) if n = 1
2×work(n/2)+O(1) otherwise

Master Theorem says this recurrence is Θ(n).

Analyzing a Parallel Algorithm: Span of Perfect Tree 14

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Perfect Tree
20

30

40 50

60

70 80

To calculate span, we take the max of the recursive calls. First, we make
a recurrence:

span(n) = ⎧⎪⎪⎨⎪⎪⎩
O(1) if n = 1
max(span(n/2) ,span(n/2))+O(1) otherwise

Master Theorem says this recurrence is Θ(lgn).
Again, this proves our intuition that parallelizing tree algorithms helps.

But what does it mean for work to be Θ(n) and span to be Θ(lgn)?

Speed-up, Parallelism, and TP 15

Definition (Speed-Up)

The speed-up given P processors is T1

TP
.

If the speed-up is P as we vary P, it’s called a perfect linear speed-up.

Definition (Parallelism)
Parallelism is the maximum possible speed-up. In other words,
parallelism is the speed-up when we take P =∞.

We want to decrease span without increasing work!

Okay, but we don’t have ∞ processors. . . 16

Consider TP. We know the following:

TP ≥ T1

P
, the case where all the processors are always busy.

TP ≥ T∞, T∞ is the length of the critical path which the algorithm
must go through.

So, in an optimal execution, asymptotically, we know:

TP ∈Θ(T1

P
+T∞)

The Good News!
The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal! (Want to know how? Take an advanced course!)
But this is only true given some assumptions about your code:

The program splits up the work into small and approximately equal
pieces
The program combines the pieces efficiently

Applying Our Asymptotic Bound 17

Minimum in a Perfect Tree
When calculating the minimum element in a tree, we had:

work(n) ∈Θ(n)
span(n) ∈Θ(lgn)

So, we expect the algorithm to take O(n
P
+ lgn)

Another Example
Suppose we have the following work and span:

work(n) ∈Θ(n2)
span(n) ∈Θ(n)

So, we expect the algorithm to take O(n2

P
+n)

Amdahl’s Law 18

Every program has:
parts that parallelize easily/well
parts that don’t parallelize at all

For example, we can’t parallelize reading a linked list.

The non-parallelizable parts of a program are a huge bottleneck

Amdahl’s Law 19

Split the work up into two pieces: the “parallelizable” piece and the
“non-parallelizable” piece. Let S be the inherently sequential work.

T1 = S×work(n)+(1−S)×work(n)
Suppose we get a perfect linear speed-up on the parallelizable work:

TP = S×work(n)+ (1−S)×work(n)
P

So, the speed-up is:
T1

TP
= 1

S+ 1−S
P

The Bad News
Suppose 33% of a program is sequential. Then, the absolute best
speed-up we can get is:

T1

T∞ = 1
0.33

= 3

That means infinitely many processors won’t help us get more
than a 3 times speed-up!

So, Let’s Give Up? 20

Amdahl tells us that if a particular algorithm has too many sequential
computations, it’s better to find a more parallelizable algorithm than to
just add more processors.

We’ll see next time that unexpected problems can be solved in parallel!

Moore and Amdahl
Moore’s “Law” is an observation about the progress of the semiconductor
industry:

Transistor density doubles roughly every 18 months

Amdahls Law is a mathematical theorem:

Diminishing returns of adding more processors

Both are incredibly important in designing computer systems

