Work and Span

With sequential algorithms, we often consider@e runtime of the
algorithm). Now, we'll consider a more general notiorm

Let Tp(n) be the runtime of an algorithm using P processors.

There are two important runtime quantities for a parallel algorithm:
O'|ow long it would take if it were fully sequential (work)
O—Iow long it would take if it were as parallel as possible (span)

Analyzing a Parallel Algorithm

For each “type” of tree, figure out work(—) and span(—) of findMin in
terms of the number of nodes, n.

r—,& (Parallel) Algorithm
I8 int findMin(Node current) {

if (current is a leaf) {
return current.data;

return min(current.data, findMin(left), findMin(right));

Perfect Tree

10

Analyzing a Parallel Algorithm: Work of Degenerate Tree 11

A (Parallel) Algorithm

int findMin(Node current) {
if (current is a leaf) {
return current.data;

}

Degenerate Tree

DO WN

retui'n min‘current.data, findMin(left),
findMin(rigit));

To calculate work, we just do our standard analysis. First, we make a
recurrence:

v () = J0)
wack () = volk(®) rwolkl-) +

Q(v\)

Analyzing a Parallel Algorithm: Span of Degenerate Tree 12

A (Parallel) Algorithm

int findMin(Node current) {
if (current is a leaf) {
return current.data;

}

Degenerate Tree

DO WN

return min(current.data, findMin(left),
findMin(right));

To calculate span, we assume all calls are in parallel. We look for the
longest dependence chain. We make a recurrence:

Sedn (1) ’
Seen(n) “mex(Se) Sean(h-1)) +

))

-b('h) A

Analyzing a Parallel Algorithm: Work of Perfect Tree

A (Parallel) Algorithm

int findMin(Node current) {
if (current is a leaf) {
return current.data;

}

Perfect Tree

DO WN

return min(current.data, findMin(left),
findMin(right));

To calculate work, we just do our standard analysis. First, we make a
recurrence:

wol (1) 3/
velk(n) = Qwlklmh) +)

Qn)

Analyzing a Parallel Algorithm: Span of Perfect Tree 14

A (Parallel) Algorithm

int findMin(Node current) {
if (current is a leaf) {
return current.data;

}

Perfect Tree

DO WN

return min(current.data, findMin(left),
findMin(right));

b

To calculate span, we take the max of the recursive calls. First, we make

a recurrence:

Sean (1) 5|
Sfﬂh(h) 2z mav (Som {nh) ; Y'Mp/hl))) +’

Q nih)

Analyzing a Parallel Algorithm: Span of Perfect Tree

DO WN

A (Parallel) Algorithm

int findMin(Node current) {
if (current is a leaf) {
return current.data;

}

Perfect Tree

return min(current.data, findMin(left), ~ ', = ~ ’

findMin(right));

To calculate span, we take the max of the recursive calls. First, we make
a recurrence:

(1) ifn=1

span(n) = {maX(Span (n/2),span(n/2))+O(1) otherwise

Master Theorem says this recurrence is ®(lgn).

Again, this proves our intuition t Igorithms helps.

But what does it mean for work to be @(n) and span to be O(lgn)?

Okay, but we don’t have o« processors. . .

Consider We know the following:

16

Okay, but we don’t have o« processors. . .

Consider Tp. We know the following:

T
uTp2> Fl the case where all the processors are always busy.

B Tp>To, Too is the length of the critical path which the algorithm
must go through.

So, in an optimal execution, asymptotically, we know:

16

Applying Our Asymptotic Bound

Minimum in a Perfect Tree

When calculating the minimum element in a tree, we had:
m work (n) € O(n)

® span(n) € O(lgn)

So, we expect the algorithm to take O(% +lgn,)
\

kG > Teenn)

Another Example

Suppose we have the following work and span:
® work (n) € ©(n?)
B span (n) € O(n)

7
So, we expect the algorithm to take O(’; +n)

17

	Parallel Primitives
	Paralellism with Other Data Structures
	Analyzing Parallel Algorithms

