
Work and Span 9

With sequential algorithms, we often considered T(n) (the runtime of the
algorithm). Now, we’ll consider a more general notion:

Let TP(n) be the runtime of an algorithm using P processors.

There are two important runtime quantities for a parallel algorithm:
How long it would take if it were fully sequential (work)
How long it would take if it were as parallel as possible (span)

Definition (Work)
We say work(n) = T

1

(n) = T(n) is the culmulative work that all
processors must complete.

Definition (Span)
We say span(n) = T∞(n) is the largest amount of work some processor
must complete.



Analyzing a Parallel Algorithm 10

For each “type” of tree, figure out work(−) and span(−) of findMin in
terms of the number of nodes, n.

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left), findMin(right));
7 }

Degenerate Tree

1

2

3

4

Perfect Tree

20

30

40 50

60

70 80



Analyzing a Parallel Algorithm: Work of Degenerate Tree 11

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Degenerate Tree
1

2

3

4

To calculate work, we just do our standard analysis. First, we make a
recurrence:

work(n) = �����������
0 if n = 0O(1) if n = 1

work(0)+work(n−1)+O(1) otherwise

Solving this recurrence gives us:

work(n) = n�
i=0

1 =Q(n)



Analyzing a Parallel Algorithm: Span of Degenerate Tree 12

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Degenerate Tree
1

2

3

4

To calculate span, we assume all calls are in parallel. We look for the
longest dependence chain. We make a recurrence:

span(n) = �����������
0 if n = 0O(1) if n = 1

max(span(0) ,span(n−1))+O(1) otherwise

This ends up being the same recurrence as for work(−). Notice for the
degenerate tree work(n) = span(n). This proves our intution that we
don’t get much of a (any!) speed-up with parallelism for linked lists!



Analyzing a Parallel Algorithm: Work of Perfect Tree 13

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Perfect Tree
20

30

40 50

60

70 80

To calculate work, we just do our standard analysis. First, we make a
recurrence:

work(n) = �������O(1) if n = 1

2×work(n�2)+O(1) otherwise

Master Theorem says this recurrence is Q(n).



Analyzing a Parallel Algorithm: Span of Perfect Tree 14

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Perfect Tree
20

30

40 50

60

70 80

To calculate span, we take the max of the recursive calls. First, we make
a recurrence:

span(n) = �������O(1) if n = 1

max(span(n�2) ,span(n�2))+O(1) otherwise

Master Theorem says this recurrence is Q(lgn).
Again, this proves our intuition that parallelizing tree algorithms helps.

But what does it mean for work to be Q(n) and span to be Q(lgn)?



Analyzing a Parallel Algorithm: Span of Perfect Tree 14

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Perfect Tree
20

30

40 50

60

70 80

To calculate span, we take the max of the recursive calls. First, we make
a recurrence:

span(n) = �������O(1) if n = 1

max(span(n�2) ,span(n�2))+O(1) otherwise

Master Theorem says this recurrence is Q(lgn).
Again, this proves our intuition that parallelizing tree algorithms helps.

But what does it mean for work to be Q(n) and span to be Q(lgn)?



Okay, but we don’t have ∞ processors. . . 16

Consider TP. We know the following:

TP ≥ T
1

P
,

the case where all the processors are always busy.

TP ≥ T∞, T∞ is the length of the critical path which the algorithm
must go through.

So, in an optimal execution, asymptotically, we know:

TP ∈Q�T
1

P
+T∞�

The Good News!
The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal! (Want to know how? Take an advanced course!)
But this is only true given some assumptions about your code:

The program splits up the work into small and approximately equal
pieces
The program combines the pieces e�ciently



Okay, but we don’t have ∞ processors. . . 16

Consider TP. We know the following:

TP ≥ T
1

P
, the case where all the processors are always busy.

TP ≥ T∞, T∞ is the length of the critical path which the algorithm
must go through.

So, in an optimal execution, asymptotically, we know:

TP ∈Q�T
1

P
+T∞�

The Good News!
The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal! (Want to know how? Take an advanced course!)
But this is only true given some assumptions about your code:

The program splits up the work into small and approximately equal
pieces
The program combines the pieces e�ciently



Applying Our Asymptotic Bound 17

Minimum in a Perfect Tree
When calculating the minimum element in a tree, we had:

work(n) ∈Q(n)
span(n) ∈Q(lgn)

So, we expect the algorithm to take O� n
P
+ lgn�

Another Example
Suppose we have the following work and span:

work(n) ∈Q(n2)
span(n) ∈Q(n)

So, we expect the algorithm to take O�n2

P
+n�


	Parallel Primitives
	Paralellism with Other Data Structures
	Analyzing Parallel Algorithms

