
Analyzing a Parallel Algorithm: Work of Degenerate Tree 11

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Degenerate Tree
1

2

3

4

To calculate work, we just do our standard analysis. First, we make a
recurrence:

work(n) = �����������
0 if n = 0O(1) if n = 1

work(0)+work(n−1)+O(1) otherwise

Solving this recurrence gives us:

work(n) = n�
i=0

1 =Q(n)



Analyzing a Parallel Algorithm: Span of Degenerate Tree 12

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Degenerate Tree
1

2

3

4

To calculate span, we assume all calls are in parallel. We look for the
longest dependence chain. We make a recurrence:

span(n) = �����������
0 if n = 0O(1) if n = 1

max(span(0) ,span(n−1))+O(1) otherwise

This ends up being the same recurrence as for work(−). Notice for the
degenerate tree work(n) = span(n). This proves our intution that we
don’t get much of a (any!) speed-up with parallelism for linked lists!



Analyzing a Parallel Algorithm: Work of Perfect Tree 13

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Perfect Tree
20

30

40 50

60

70 80

To calculate work, we just do our standard analysis. First, we make a
recurrence:

work(n) = �������O(1) if n = 1

2×work(n�2)+O(1) otherwise

Master Theorem says this recurrence is Q(n).



Analyzing a Parallel Algorithm: Span of Perfect Tree 14

A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }

Perfect Tree
20

30

40 50

60

70 80

To calculate span, we take the max of the recursive calls. First, we make
a recurrence:

span(n) = �������O(1) if n = 1

max(span(n�2) ,span(n�2))+O(1) otherwise

Master Theorem says this recurrence is Q(lgn).
Again, this proves our intuition that parallelizing tree algorithms helps.

But what does it mean for work to be Q(n) and span to be Q(lgn)?


	Parallel Primitives
	Paralellism with Other Data Structures
	Analyzing Parallel Algorithms

