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A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }
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To calculate work, we just do our standard analysis. First, we make a
recurrence:

work(n) = �����������
0 if n = 0O(1) if n = 1

work(0)+work(n−1)+O(1) otherwise

Solving this recurrence gives us:

work(n) = n�
i=0

1 =Q(n)
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A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }
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To calculate span, we assume all calls are in parallel. We look for the
longest dependence chain. We make a recurrence:

span(n) = �����������
0 if n = 0O(1) if n = 1

max(span(0) ,span(n−1))+O(1) otherwise

This ends up being the same recurrence as for work(−). Notice for the
degenerate tree work(n) = span(n). This proves our intution that we
don’t get much of a (any!) speed-up with parallelism for linked lists!
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A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }
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To calculate work, we just do our standard analysis. First, we make a
recurrence:

work(n) = �������O(1) if n = 1

2×work(n�2)+O(1) otherwise

Master Theorem says this recurrence is Q(n).
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A (Parallel) Algorithm
1 int findMin(Node current) {
2 if (current is a leaf) {
3 return current.data;
4 }
5
6 return min(current.data, findMin(left),

findMin(right));
7 }
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To calculate span, we take the max of the recursive calls. First, we make
a recurrence:

span(n) = �������O(1) if n = 1

max(span(n�2) ,span(n�2))+O(1) otherwise

Master Theorem says this recurrence is Q(lgn).
Again, this proves our intuition that parallelizing tree algorithms helps.

But what does it mean for work to be Q(n) and span to be Q(lgn)?
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