Analyzing a Parallel Algorithm: Work of Degenerate Tree 11

A (Parallel) Algorithm

int findMin(Node current) {
if (current is a leaf) {
return current.data;

}

DO WN

return min(current.data, findMin(left),
findMin(right));

To calculate work, we just do our standard analysis. Fird%
recurrence:

'T[\\ P
T = ROEICRRL

YORVA

Analyzing a Parallel Algorithm: Span of Degenerate Tree 12

A (Parallel) Algorithm

int findMin(Node current) {
if (current is a leaf) {
return current.data;

}

Degenerate Tree

DO WN

return min(current.data, findMin(left),
findMin(right));

To calculate span, we assume all calls are in parallel. We look for the
longest dependence chain. We make a recurrence:

St () =
) =mar (f;"”(o;/ 0 ,,)) 3/

@(n) / l,\\

Analyzing a Parallel Algorithm: Work of Perfect Tree

A (Parallel) Algorithm
int findMin(Node current) {
if (current is a leaf) {
return current.data;

Perfect Tree

}

DO WN

return min(current.data, findMin(left),
findMin(right));

To calculate work, we just do our standard analysis. First, we make a

TG =T ¥

Analyzing a Parallel Algorithm: Span of Perfect Tree 14

A (Parallel) Algorithm

int findMin(Node current) {
if (current is a leaf) {
return current.data;

}

Perfect Tree

DO WN

return min(current.data, findMin(left),
findMin(right));

b

To calculate span, we take the max of the recursive calls. First, we make
a recurrence:

SPon(w) 2 max(srer(a), Soin(nt)))

	Parallel Primitives
	Paralellism with Other Data Structures
	Analyzing Parallel Algorithms

