

ADT's So Far

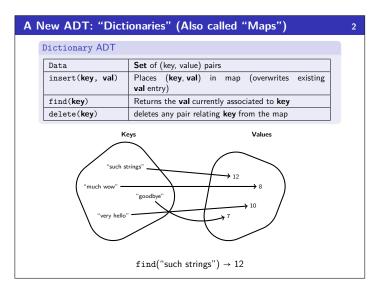
1

Where We've Been So Far Stack (Get LIFO) Queue (Get FIFO)

Priority Queue (Get By Priority)

Sets and Maps Dictionaries are the more general structure, but, in terms of implementation, they're nearly identical. In a Set, we store the key directly, but conceptually, there's nothing different in storing an Item: class Item { Data key; 3 4 } Data value; The Set ADT usually has our favorite operations: intersection, union, etc. Notice that union, intersection, etc. still make sense on maps! As always, depending on our usage, we might choose to $\mathsf{add}/\mathsf{delete}$ things from out ADT. Bottom Line: If we have a set implementation, we also have a valid dictionary implementation (and vice versa)!

Today, we begin discussing Maps. This ADT is hugely important.



Dictionaries Are The BEST!

It turns out dictionaries are super useful. They're a natural generalization of arrays. Instead of storing data at an index, we store data at anything.

- Networks: router tables
- Operating Systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Search: inverted indexes, phone directories, ...
- Biology: genome maps

Dictionary Implementations, Take # 1

For each of the following potential implementations, what is the worst case runtime for insert, find, delete?

- Unsorted Array
 Insert by searching for existence and inserting which is O(n)

 Find by linear search which is O(n)
 Delete by linear search AND shift which is O(n)
 Unsorted Linked List
 Insert by searching for existence and inserting which is O(n)
- Find by linear search which is $\mathcal{O}(n)$ Delete by linear search AND shift which is $\mathcal{O}(n)$ Sorted Linked List
- Insert by searching for existence and inserting which is O(n)Find by linear search which is O(n)Delete by linear search AND shift which is O(n)
- Sorted Array List
 Insert by binary search AND shift which is O(n)
 Find by binary search which is O(lgn)
 Delete by binary search AND shift which is O(n)

Dictionary Implementations, Take # ??

It turns out there are many different ways to do much better.

But they all have their own trade-offs!

So, we'll study many of them:

- "Vanilla BSTs" today (vanilla because they're "plain")
- "Balanced BSTs" there are many types: we'll study AVL Trees
- "B-Trees" another strategy for a lot of data
- "Hashtables" a completely different strategy (lack data ordering)

Where The Idea Comes From

6

Binary Search is great! It's the only thing that was even sort of fast in that table. But insert and delete are really bad into a sorted array. Store the data in a structure where **most of the data isn't accessed**.

Interestingly, this is very similar to what made heaps useful!

To put it another way, by storing the data in an **array**, we're paying for the constant-time access that we're never even using!

It's okay that it takes more time to access certain elements.

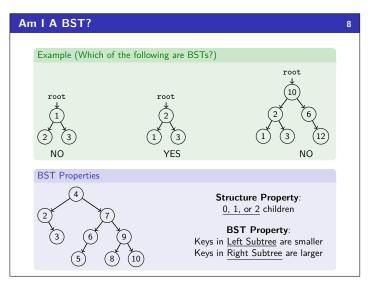
... as long as it's **never** too bad.

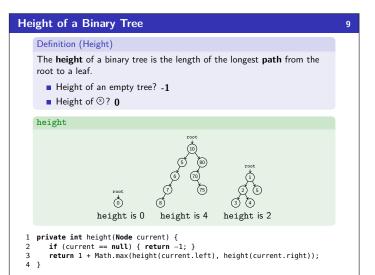
Definition (Vanilla BST)

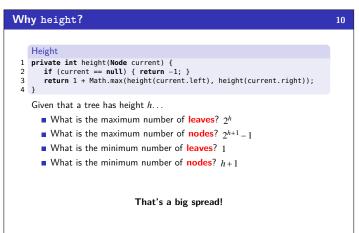
A binary tree is a $\ensuremath{\textbf{BST}}$ when an $\ensuremath{\textbf{in-order traversal of the tree}}$ yields a sorted list.

To put it another way, a binary tree is a **BST** when:

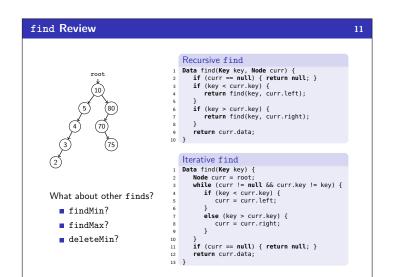
- All data "to the left of" a node is less than it
- All data "to the right of" a node is greater than it
- All sub-trees of the binary tree are also BSTs

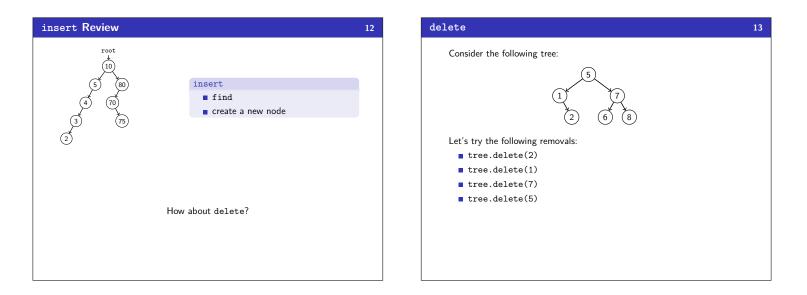


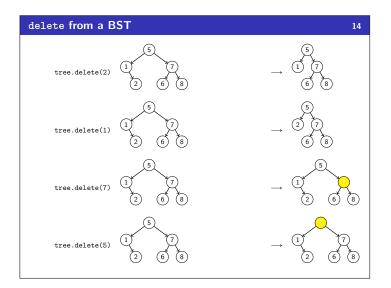


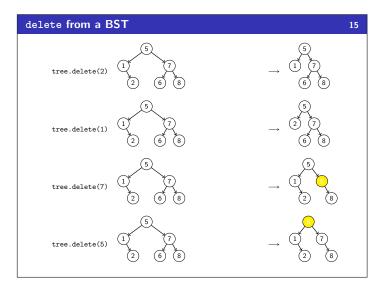


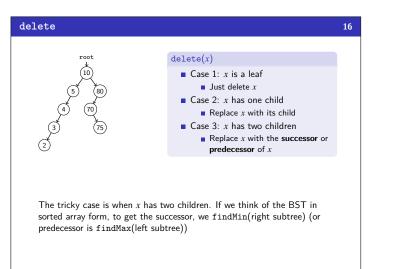
This confirms what we already know: height in a tree has a big impact on runtime.





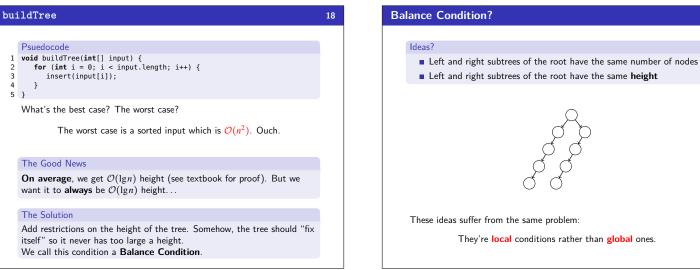


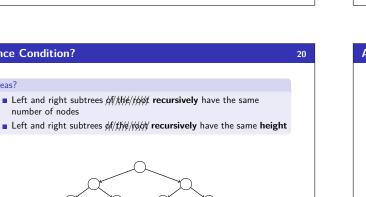




delete is hard; let's go shopping 17 Instead of doing this complicated algorithm, here's an idea: Mark the node as "deleted" instead of doing anything lazyDelete(5) Then, insert and find change slightly, but the whole thing is much simpler. This "lazy deletion" is a very useful strategy!

19





These ideas suffer from the same problem:

Balance Condition?

number of nodes

Ideas?

They're way too strong. Only perfect trees satisfy them.

AVL Balance Condition! 21 Left and right subtrees recursively have heights differing by at most one. Definition (balance) balance(n) = abs(height(n.left) - height(n.right)) Definition (AVL Balance Property) An AVL tree is balanced when: For every node n, balance $(n) \leq 1$

This ensures a small depth (we'll prove this next time)

It's relatively easy to maintain (we'll see this next time)