
Sets and Maps 3

Dictionaries are the more general structure, but, in terms of
implementation, they’re nearly identical.

In a Set, we store the key directly, but conceptually, there’s nothing
di�erent in storing an Item:

1 class Item {
2 Data key;
3 Data value;
4 }

The Set ADT usually has our favorite operations: intersection, union, etc.

Notice that union, intersection, etc. still make sense on maps!

As always, depending on our usage, we might choose to add/delete
things from out ADT.

Bottom Line: If we have a set implementation, we also have a valid
dictionary implementation (and vice versa)!



Dictionary Implementations, Take # 1 5

For each of the following potential implementations, what is the worst
case runtime for insert, find, delete?

Unsorted Array

Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)

Unsorted Linked List

Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)

Sorted Linked List

Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)

Sorted Array List

Insert by binary search AND shift which is O(n)
Find by binary search which is O(lgn)
Delete by binary search AND shift which is O(n)



Dictionary Implementations, Take # ?? 6

It turns out there are many di�erent ways to do much better.

But they all have their own trade-o�s!

So, we’ll study many of them:
“Vanilla BSTs” – today (vanilla because they’re “plain”)
“Balanced BSTs” – there are many types: we’ll study AVL Trees
“B-Trees” – another strategy for a lot of data
“Hashtables” – a completely di�erent strategy (lack data ordering)



Am I A BST? 8

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root

10

2

1 3

6

12

root

NO YES NO

BST Properties

4

2

3

7

6

5

9

8 10

Structure Property:
0, 1, or 2 children

BST Property:
Keys in Left Subtree are smaller
Keys in Right Subtree are larger



Height of a Binary Tree 9

Definition (Height)
The height of a binary tree is the length of the longest path from the
root to a leaf.

Height of an empty tree?

-1
Height of X ? 0

height

0

root

10

5

6

7

8

80

70

75

root

1

2

3 4

5

root

height is 0 height is 4 height is 2

1 private int height(Node current) {
2 if (current == null) { return −1; }
3 return 1 + Math.max(height(current.left), height(current.right));
4 }



Height of a Binary Tree 9

Definition (Height)
The height of a binary tree is the length of the longest path from the
root to a leaf.

Height of an empty tree? -1
Height of X ? 0

height

0

root

10

5

6

7

8

80

70

75

root

1

2

3 4

5

root

height is 0 height is 4 height is 2

1 private int height(Node current) {
2 if (current == null) { return −1; }
3 return 1 + Math.max(height(current.left), height(current.right));
4 }



Height of a Binary Tree 9

Definition (Height)
The height of a binary tree is the length of the longest path from the
root to a leaf.

Height of an empty tree? -1
Height of X ? 0

height

0

root

10

5

6

7

8

80

70

75

root

1

2

3 4

5

root

height is 0 height is 4 height is 2

1 private int height(Node current) {
2 if (current == null) { return −1; }
3 return 1 + Math.max(height(current.left), height(current.right));
4 }



Why height? 10

Height
1 private int height(Node current) {
2 if (current == null) { return −1; }
3 return 1 + Math.max(height(current.left), height(current.right));
4 }

Given that a tree has height h. . .
What is the maximum number of leaves?

2h

What is the maximum number of nodes?

2h+1−1

What is the minimum number of leaves?

1

What is the minimum number of nodes?

h+1

That’s a big spread!

This confirms what we already know: height in a tree has a big impact
on runtime.



find Review 11

10

5

4

3

2

80

70

75

root

What about other finds?
findMin?
findMax?
deleteMin?

Recursive find

1 Data find(Key key, Node curr) {
2 if (curr == null) { return null; }
3 if (key < curr.key) {
4 return find(key, curr.left);
5 }
6 if (key > curr.key) {
7 return find(key, curr.right);
8 }
9 return curr.data;

10 }

Iterative find

1 Data find(Key key) {
2 Node curr = root;
3 while (curr != null && curr.key != key) {
4 if (key < curr.key) {
5 curr = curr.left;
6 }
7 else (key > curr.key) {
8 curr = curr.right;
9 }

10 }
11 if (curr == null) { return null; }
12 return curr.data;
13 }



delete 13

Consider the following tree:

5

1

2

7

6 8

Let’s try the following removals:
tree.delete(2)

tree.delete(1)

tree.delete(7)

tree.delete(5)



delete from a BST 14

tree.delete(2)

5

1

2

7

6 8

�→

5

1 7

6 8

tree.delete(1)

5

1

2

7

6 8

�→

5

2 7

6 8

tree.delete(7)

5

1

2

7

6 8

�→

5

1

2

?

6 8

tree.delete(5)

5

1

2

7

6 8

�→

?

1

2

7

6 8



delete from a BST 15

tree.delete(2)

5

1

2

7

6 8

�→
5

1 7

6 8

tree.delete(1)

5

1

2

7

6 8

�→
5

2 7

6 8

tree.delete(7)

5

1

2

7

6 8

�→
5

1

2

6

8

tree.delete(5)

5

1

2

7

6 8

�→
6

1

2

7

8



delete 16

10

5

4

3

2

80

70

75

root

delete(x)
Case 1: x is a leaf

Just delete x

Case 2: x has one child
Replace x with its child

Case 3: x has two children
Replace x with the successor or

predecessor of x

The tricky case is when x has two children. If we think of the BST in
sorted array form, to get the successor, we findMin(right subtree) (or
predecessor is findMax(left subtree))


	Dictionaries & Sets
	Vanilla BSTs

