
Sets and Maps 3

Dictionaries are the more general structure, but, in terms of
implementation, they’re nearly identical.

In a Set, we store the key directly, but conceptually, there’s nothing
di�erent in storing an Item:

1 class Item {
2 Data key;
3 Data value;
4 }

The Set ADT usually has our favorite operations: intersection, union, etc.

Notice that union, intersection, etc. still make sense on maps!

As always, depending on our usage, we might choose to add/delete
things from out ADT.

Bottom Line: If we have a set implementation, we also have a valid
dictionary implementation (and vice versa)!



Dictionary Implementations, Take # 1 5

For each of the following potential implementations, what is the worst
case runtime for insert, find, delete?

Unsorted Array

Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)

Unsorted Linked List

Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)

Sorted Linked List

Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)

Sorted Array List

Insert by binary search AND shift which is O(n)
Find by binary search which is O(lgn)
Delete by binary search AND shift which is O(n)



Am I A BST? 8

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root

10

2

1 3

6

12

root

NO YES NO

BST Properties

4

2

3

7

6

5

9

8 10

Structure Property:
0, 1, or 2 children

BST Property:
Keys in Left Subtree are smaller
Keys in Right Subtree are larger



Height of a Binary Tree 9

Definition (Height)
The height of a binary tree is the length of the longest path from the
root to a leaf.

Height of an empty tree?

-1
Height of X ? 0

height

0

root

10

5

6

7

8

80

70

75

root

1

2

3 4

5

root

height is 0 height is 4 height is 2

1 private int height(Node current) {
2 if (current == null) { return −1; }
3 return 1 + Math.max(height(current.left), height(current.right));
4 }



Why height? 10

Height
1 private int height(Node current) {
2 if (current == null) { return −1; }
3 return 1 + Math.max(height(current.left), height(current.right));
4 }

Given that a tree has height h. . .
What is the maximum number of leaves?

2h

What is the maximum number of nodes?

2h+1−1

What is the minimum number of leaves?

1

What is the minimum number of nodes?

h+1

That’s a big spread!

This confirms what we already know: height in a tree has a big impact
on runtime.



delete from a BST 14

tree.delete(2)

5

1

2

7

6 8

�→

5

1 7

6 8

tree.delete(1)

5

1

2

7

6 8

�→

5

2 7

6 8

tree.delete(7)

5

1

2

7

6 8

�→

5

1

2

?

6 8

tree.delete(5)

5

1

2

7

6 8

�→

?

1

2

7

6 8



delete 16

10

5

6

7

8

80

70

75

root

delete(x)
Case 1: x is a leaf

Just delete x

Case 2: x has one child
Replace x with its child

Case 3: x has two children
Replace x with the successor or

predecessor of x

The tricky case is when x has two children. If we think of the BST in
sorted array form, to get the successor, we findMin(right subtree) (or
predecessor is findMax(left subtree))



buildTree 18

Psuedocode
1 void buildTree(int[] input) {
2 for (int i = 0; i < input.length; i++) {
3 insert(input[i]);
4 }
5 }

What’s the best case? The worst case?

The worst case is a sorted input which is O(n2). Ouch.

The Good News
On average, we get O(lgn) height (see textbook for proof). But we
want it to always be O(lgn) height. . .

The Solution
Add restrictions on the height of the tree. Somehow, the tree should “fix
itself” so it never has too large a height.
We call this condition a Balance Condition.



Balance Condition? 19

Ideas?
Left and right subtrees of the root have the same number of nodes
Left and right subtrees of the root have the same height

These ideas su�er from the same problem:

They’re local conditions rather than global ones.



Balance Condition? 20

Ideas?
Left and right subtrees //of/////the//////root recursively have the same
number of nodes
Left and right subtrees //of/////the//////root recursively have the same height

These ideas su�er from the same problem:

They’re way too strong. Only perfect trees satisfy them.



AVL Balance Condition! 21

Left and right subtrees recursively have heights di�ering by at most one.

Definition (balance)
balance(n) = abs(height(n.left)−height(n.right))

Definition (AVL Balance Property)
An AVL tree is balanced when:

For every node n, balance(n) ≤ 1

This ensures a small depth (we’ll prove this next time)
It’s relatively easy to maintain (we’ll see this next time)


	Dictionaries & Sets
	Vanilla BSTs

