Dictionaries are the more general structure, but, in terms of implementation, they're nearly identical.

In a Set, we store the key directly, but concentually there's nothing different in storing an Item:
class Item \{
Data key;
Data value;
$\left.\begin{array}{ll}3 \\ 4\end{array}\right\}$

The Set ADT usually has our favorite operations: intersection, union, etc.
Notice that union, intersection, etc. still make sense on maps!
As always, depending on our usage, we might choose to add/delete things from out ADT.

Bottom Line: If we have a set implementation, we also have a valid dictionary implementation (and vice versa)!

Dictionary Implementations, Take \# 1

For each of the following potential implementations, what is the worst

Am I A BST?

Example (Which of the following are BSTs?)

Definition (Height)

The height of a binary tree is the length of the longest path from the root to a leaf.

- Height of an empty tree?

Height

```
1 \text { private int height(Node current) \{}
    if (current == null) { return -1; }
    return 1 + Math.max(height(current.left), height(current.right));
```

Given that a tree has height $h .$. .

- What is the maximum number of leaves?
- What is the maximum number of nodes?-
- What is the minimum number of leaves? |

What is the minimum number of nodes?

$$
\sum_{i=0}^{h} 2^{i}
$$

delete from a BST

delete (x)

- Case 1: x is a leaf
- Just delete x
- Case 2: x has one child
- Replace x with its child
- Case 3: x has two children
- Replace x with the successor or predecessor of x

The tricky case is when x has two children. If we think of the BST in sorted array form, to get the successor, we findMin(right subtree) (or predecessor is findMax(left subtree))

buildTree

Psuedocode

What's the best case? The worst case?

Ideas?

- Left and right subtrees of the root have the same number of nodes
- Left and right subtrees of the root have the same height

Ideas?

- Left and right subtrees $\phi \bar{\phi} / / t / \phi \phi / r \phi / \phi \phi t$ recursively have the same number of nodes
- Left and right subtrees $\phi f / t / \hbar / \phi / \phi \phi \phi \phi t /$ recursively have the same height

$$
1,2,3,4
$$

AVL Balance Condition!

Left and right subtrees recursively have heights differing by at most one.

Definition (balance)
balance $(\mathrm{n})=\operatorname{abs}($ height $(\mathrm{n}$. left $)-$ height (n.right $))$
Definition (AVL Balance Property)
An AVL tree is balanced when:

$$
\text { For every node } n \text {, balance }(n) \leq 1
$$

- This ensures a small depth (we'll prove this next time)
- It's relatively easy to maintain (we'll see this next time)

