
AVL Balance Condition! 1

Left and right subtrees recursively have heights di�ering by at most one.

Definition (balance)
balance(n) = abs(height(n.left)−height(n.right))

Definition (AVL Balance Property)
An AVL tree is balanced when:

For every node n, balance(n) ≤ 1

This ensures a small depth
It’s relatively easy to maintain

AVL Trees 2

AVL Tree

4

2

3

7

6

5

9

8 10

Structure Property:
0, 1, or 2 children

BST Property:
Keys in Left Subtree are smaller
Keys in Right Subtree are larger

AVL Balance Property:
Left and Right subtrees have heights

that di�er by at most one.

That is, all AVL Trees are BSTs, but the reverse is not true.

AVL Trees rule out unbalanced BSTs.

The BST Worst Case 6

Worst Case

1

h = 0 insert(2)�����→ 1

h = 1

2

h = 0
insert(3)�����→

1

h = 2

2

h = 1

3

h = 0

When we insert 3, we violate the AVL Balance condition. What to do?

There’s only one tree with the BST Property and the Balance Property:

FIXING The Worst Case

1

h = 2

2

h = 1

3

h = 0

fix(1)����→ 2

h = 1

1

h = 0
3

h = 0

AVL Rotation 7

This “fix” is called a rotation. We’re “rotating” the child node “up”:

Rotation
a

b

ZY
X

rotate(a)�����→
b

a

Z
YX

This is the only fundamental of AVL Trees!

You can either look at this as “the only way to correctly rearrange the
subtrees” or it’s helpful to think of it as gravity.

More Complicated Now. . . 9

Inserting 16
Is the result an AVL tree? If not, how do we fix it?

15

8

4

3 6

10

22

19

17

16

20

24

fix(22)����→
15

8

4

3 6

10

19

17

16

22

20 24

This is just the same rotation in the other direction!

More Complicated Now. . . 9

Inserting 16
Is the result an AVL tree? If not, how do we fix it?

15

8

4

3 6

10

22

19

17

16

20

24

fix(22)����→
15

8

4

3 6

10

19

17

16

22

20 24

This is just the same rotation in the other direction!

AVL Rotations. . . Are We Done? 11

We Want. . .

Cases We’ve Handled

Cases To Handle

AVL Rotations. . . Are We Done? 11

We Want. . .

Cases We’ve Handled

Cases To Handle

Another Case 12

Second Case

1

h = 0 insert(3)�����→ 1

h = 1

3

h = 0
insert(2)�����→

1

h = 2

3

h = 1

2

h = 0

When we insert 2, we violate the AVL Balance condition. What to do?

There’s only one tree with the BST Property and the Balance Property:

FIXING The Second Case

1

h = 2

3

h = 1

2

h = 0

fix(1)����→ 2

h = 1

1

h = 0
3

h = 0

It Doesn’t Look Like a Single Rotation Will Do. . . 13

Double Rotation
a

b

c

W

XY

Z

fix(a)����→
a

b

c

W

XY

Z

First, we rotate b.

rotate(b)�����→

a

c

b

W

X

Y

Z

Now, we’re back
to the line case.

rotate(a)�����→
c

a b

W XY Z

And now it’s balanced!

It Doesn’t Look Like a Single Rotation Will Do. . . 13

Double Rotation
a

b

c

W

XY

Z

fix(a)����→
a

b

c

W

XY

Z

First, we rotate b.

rotate(b)�����→

a

c

b

W

X

Y

Z

Now, we’re back
to the line case.

rotate(a)�����→
c

a b

W XY Z

And now it’s balanced!

Does an AVL Tree Work? 17

We must guarantee that the AVL property gives us a small enough tree.
Our approach: Find a big lower bound on the number of nodes
necessary to make a tree with height h.

What is the smallest number of nodes to get a height h AVL Tree?

For h = 0
For h = 1

For h = 2

◆
◆
◆
◆◆S

S
S
SS

This is not

an AVL tree!

Does an AVL Tree Work? 17

We must guarantee that the AVL property gives us a small enough tree.
Our approach: Find a big lower bound on the number of nodes
necessary to make a tree with height h.
What is the smallest number of nodes to get a height h AVL Tree?

For h = 0
For h = 1

For h = 2

◆
◆
◆
◆◆S

S
S
SS

This is not

an AVL tree!

Does an AVL Tree Work? 17

We must guarantee that the AVL property gives us a small enough tree.
Our approach: Find a big lower bound on the number of nodes
necessary to make a tree with height h.
What is the smallest number of nodes to get a height h AVL Tree?

For h = 0
For h = 1

For h = 2

◆
◆
◆
◆◆S

S
S
SS

This is not

an AVL tree!

Does an AVL Tree Work? 17

We must guarantee that the AVL property gives us a small enough tree.
Our approach: Find a big lower bound on the number of nodes
necessary to make a tree with height h.
What is the smallest number of nodes to get a height h AVL Tree?

For h = 0
For h = 1

For h = 2

◆
◆
◆
◆◆S

S
S
SS

This is not

an AVL tree!

Does an AVL Tree Work? 18

What is the smallest number of nodes to get a height h AVL Tree?

f (h−2)
f (h−1)

f (h)
The general number of nodes to get
a height of h is:

f (h) = f (h−2)+ f (h−1)+1

We break down where each term comes from. We want a tree that has
the smallest number of nodes where each branch has the AVL Balance
condition.

f (h−1): To force the height to be h, we take the smallest tree of
height h−1 as one of the children
f (h−2): We are allowed to have the branches di�er by one; so, we
can get a smaller number of nodes by using f (h−2)+1 comes from the root node to join together the two branches

Does an AVL Tree Work? 19

So, now we solve our recurrence. How?

Ratio Between Terms
A good way of solving a recurrence that we expect to be of the form Xn

is to look at the ratio between terms. If f (h+1)
f (h) > X , then

f (h+1) > X f (h) > X(X(f (h−1)) > ⋅ ⋅ ⋅ > Xh

So, we evaluate these ratios and see the following:
OUTPUT

>> 2.0
>> 2.0
>> 1.75
>> 1.7142857142857142
>> 1.6666666666666667
>> 1.65
>> 1.6363636363636365
>> 1.6296296296296295
>> 1.625
>> 1.6223776223776223
>> 1.6206896551724137
>> 1.6196808510638299
>> 1.619047619047619
>> 1.618661257606491
>> 1.618421052631579
>> ...

	Introducing AVL Trees
	Tree Representation in Code
	How Does an AVL Tree Work?
	Why Does an AVL Tree Work?
	AVL Tree Examples

