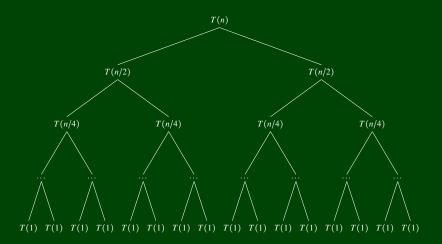
Lecture 6a

Winter 2017

Data Structures and Parallelism

CSE 332: Data Structures and Parallelism

More Recurrences



P1 De-Brief

- You did something substantial!
- You worked with "real world software"
- You honed your debugging skills
- Vou "transitioned" from 143 to 332
- You enjoyed it?? (okay, not the debugging, but...)
- Oh, some presents...
 - tokens++
 - EX06 Now Due Monday; EX07 is dead :(

While we're here...

Solving the reverse Recurrence

(n)

$$T(n) = \begin{cases} d_0 & \text{if } n = 0\\ c_0 + c_1 n + T(n-1) & \text{otherwise} \end{cases}$$

$$T(n) = (c_0 + c_1 n) + T(n-1)$$

= $(c_0 + c_1 n) + (c_0 + c_1(n-1)) + T(n-2)$
= $(c_0 + c_1 n) + (c_0 + c_1(n-1)) + (c_0 + c_1(n-2)) + ... + (c_0 + c_1(1)) + d_0$
= $\sum_{i=0}^{n-1} (c_0 + c_1(n-i)) + d_0$
= $\sum_{i=0}^{n-1} c_0 + \sum_{i=0}^{n-1} c_1(n-i) + d_0$
= $nc_0 + c_1 \sum_{i=1}^{n} i + d_0$
= $nc_0 + c_1 \left(\frac{n(n+1)}{2}\right) + d_0$

A recurrence where we solve some constant piece of the problem (e.g. "-1", "-2", etc.) is called a **Linear Recurrence**.

We solve these like we did above by Unrolling the Recurrence.

This is a fancy way of saying "plug the definition into itself until a pattern emerges".

Now, back to mergesort.

Analyzing Merge Sort

Merge Sort

```
sort(L) {
2
3
4
5
6
7
8
9
10
11
       if (L.size() < 2) {
          return L;
       }
       else {
           int mid = L.size() / 2:
          return merge(
              sort(L.subList(0, mid)),
              sort(L.subList(mid, L.size()))
           );
       }
12 }
```

First, we need to find the recurrence: $\begin{cases} d_0 & \text{if } n = 0 \\ d_1 & \text{if } n = 1 \\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$ $T(n) = \begin{cases} a_0 \\ d_1 \end{cases}$

This recurrence isn't linear! This is a "divide and conquer" recurrence.

Analyzing Merge Sort

$$T(n) = \begin{cases} d_0 & \text{if } n = 0 \\ d_1 & \text{if } n = 1 \\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$

This time, there are multiple possible approaches:

Unrolling the Recurrence

$$T(n) = (c_2 + c_1 n) + 2(c_2 + c_1 n + 2T(n/4))$$

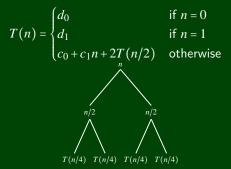
= (c_2 + c_1 n) + 2(c_2 + c_1 n + 2(c_2 + c_1 n + 2T(n/8)))
= c_2 + 2c_2 + 4c_2 + ... + argh + ...

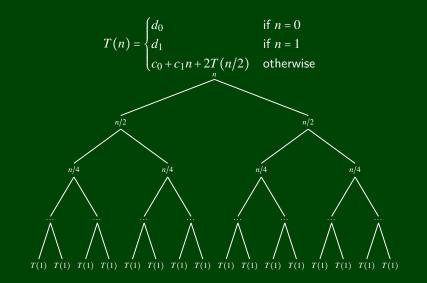
This works, but I'd rarely recommend it.

Insight: We're branching in this recurrence. So, represent it as a tree!

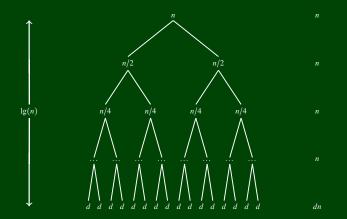
$$T(n) = \begin{cases} d_0 & \text{if } n = 0\\ d_1 & \text{if } n = 1\\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} d_0 & \text{if } n = 0\\ d_1 & \text{if } n = 1\\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$





$$T(n) = \begin{cases} d_0 & \text{if } n = 0\\ d_1 & \text{if } n = 1\\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$



Since the recursion tree has height lg(n) and each row does n work, it follows that $T(n) \in O(nlg(n))$.

sum Examples #1

```
Find A Big-Oh Bound For The Worst Case Runtime
```

```
1 sum(n) {
2    if (n < 2) {
3        return n;
4    }
5    return 2 + sum(n - 2);
6 }</pre>
```

$$T(n) = \begin{cases} d_0 & \text{if } n = 0\\ d_0 & \text{if } n = 1\\ c_0 + T(n-2) & \text{otherwise} \end{cases}$$

$$T(n) = c_0 + c_0 + \dots + c_0 + d_0$$
$$= c_0 \left(\frac{n}{2}\right) + d_0$$
$$= \mathcal{O}(n)$$

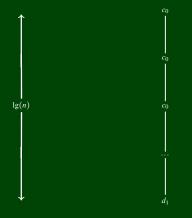
sum Examples #2

```
Find A Big-Oh Bound For The Worst Case Runtime
   binarysearch(L, value) {
 2
       if (L.size() == 0) {
 3
          return false;
4
       }
5
6
7
8
9
       else if (L.size() == 1) {
          return L[0] == value;
       }
       else {
          int mid = L.size() / 2:
10
          if (L[mid] < value) {</pre>
11
             return binarysearch(L.subList(mid + 1, L.size()), value);
12
13
          else {
14
             return binarysearch(L.subList(0, mid), value);
15
          }
16
       }
17
```

$$T(n) = \begin{cases} d_0 & \text{if } n = 0\\ d_1 & \text{if } n = 1\\ c_0 + T(n/2) & \text{otherwise} \end{cases}$$

sum Examples #2

$$T(n) = \begin{cases} d_0 & \text{if } n = 0\\ d_1 & \text{if } n = 1\\ c_0 + T(n/2) & \text{otherwise} \end{cases}$$



So, $T(n) = c_0(\lg(n) - 1) + d_1 = \mathcal{O}(\lg n)$.

Consider a recurrence of the form:

$$T(n) = \begin{cases} d & \text{if } n = 1 \\ aT\left(\frac{n}{b}\right) + n^c & \text{otherwise} \end{cases}$$

Then,

- If $\log_b(a) < c$, then $T(n) = \Theta(n^c)$.
- If $\log_b(a) = c$, then $T(n) = \Theta(n^c \lg(n))$.
- If $\log_b(a) > c$, then $T(n) = \Theta(n^{\log_b(a)})$.

Sanity Check: For Merge Sort, we have a = 2, b = 2, c = 1. Then, $\log_2(2) = 1 = 1$. So, $T(n) = n \lg n$.

Proving the First Case of Master Theorem

$$T(n) = \begin{cases} d & \text{if } n = 1\\ aT\left(\frac{n}{b}\right) + n^c & \text{otherwise} \end{cases}$$

We assume that $\log_b(a) < c$. Then, unrolling the recurrence, we get:

$$\begin{aligned} \Gamma(n) &= n^{c} + aT(n/b) \\ &= n^{c} + a((n/b)^{c} + aT(n/b^{2})) \\ &= n^{c} + a(n/b)^{c} + a^{2}(n/b^{2})^{c} + \dots + a^{\log_{b}(n)}(n/b^{\log_{b}n})^{c} \\ &= \sum_{i=0}^{\log_{b}(n)} a^{i} \left(\frac{n^{c}}{b^{ic}}\right) \\ &= n^{c} \sum_{i=0}^{\log_{b}(n)} \left(\frac{a}{b^{c}}\right)^{i} \\ &= n^{c} \left(\frac{\left(\frac{a}{b^{c}}\right)^{\log_{b}(n)+1} - 1}{\left(\frac{a}{b^{c}}\right) - 1}\right) \approx n^{c} \left(\left(\frac{a}{b^{c}}\right)^{\log_{b}(n)}\right) \approx n^{c} \end{aligned}$$

Lecture 6b

Winter 2017

Data Structures and Parallelism

CSE 332: Data Structures and Parallelism

Amortized Analysis

Stack ADT

push(val)	Adds val to the stack.
pop()	Returns the most-recent item not already returned by a pop. (Errors if empty.)
peek()	Returns the most-recent item not already returned by a pop. (Errors if empty.)
isEmpty()	Returns true if all inserted elements have been returned by a pop.

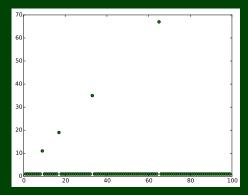
Let's analyze the time complexity for these various methods. (You know how they work, because you just implemented them!)

Method	Time Complexity
<pre>isEmpty()</pre>	$\Theta(1)$
peek()	$\Theta(1)$
pop()	$\Theta(1)$
push(val)	??

push is actually slightly more interesting.

Best Case

Worst Case

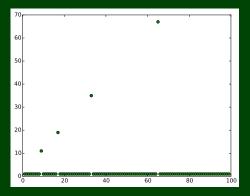


Insight: Our analysis seems wrong. Saying linear time feels wrong.

Best Case

There's more space in the underlying array! Then, it's $\Omega(1)$.

Worst Case



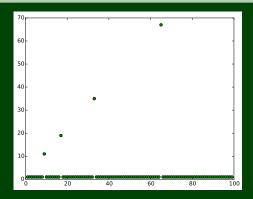
Insight: Our analysis seems wrong. Saying linear time feels wrong.

Best Case

There's more space in the underlying array! Then, it's $\Omega(1)$.

Worst Case

If there's no more space, we double the size of the array, and copy all the elements. So, it's O(n).



Insight: Our analysis seems wrong. Saying linear time feels wrong.

This is where "amortized analysis" comes in. Sometimes, we have a very rare expensive operation that we can "charge" to other operations.

Intuition: Rent, Tuition

You pay one big sum for a long period of time, but you can afford it because it happens very rarely.

Back to ArrayStack

Say we have a full Stack of size n. Then, consider the next n pushes:

- The next push will take $\mathcal{O}(n)$ (to resize the array to size 2n)
- The n-1 operations after that will all be O(1), because we know we have enough space

Considering these operations in aggregate, we have *n* operations that take $(c_0+c_1n)+(n-1)\times c_2$ time. So, how long does **each** operation take:

$$\frac{(c_0+c_1n)+(n-1)\times c_2}{n} \le \frac{n\max(c_0,c_2)+c_1n}{n} = \max(c_0,c_2)+c_1 = \mathcal{O}(1)$$

What happens if we change our resize rule to each of the following: $n \rightarrow n+1$

$$n \rightarrow \frac{3n}{2}$$

$$n \rightarrow 5n$$

Which is better 2n, $\frac{3n}{2}$, or 5n? Java uses $\frac{3n}{2}$ to minimized wasted space. What happens if we change our resize rule to each of the following:

 $n \rightarrow n+1$

This is really bad! We can only amortize over the single operation which gives us:

$$\frac{n}{1} = \mathcal{O}(n)$$

 \square $n \rightarrow \frac{3n}{2}$

$$n \rightarrow 5n$$

Which is better 2n, $\frac{3n}{2}$, or 5n? Java uses $\frac{3n}{2}$ to minimized wasted space. What happens if we change our resize rule to each of the following:

n → n + 1 This is really bad! We can only amortize over the single operation which gives us:

$$\frac{n}{1} = \mathcal{O}(n)$$

■ $n \rightarrow \frac{3n}{2}$ This still works. Now, we go over the next $\frac{3n}{2} - n$ operations:

$$\frac{n+(n/2-1)\times 1}{\frac{n}{2}} = \mathcal{O}(1)$$

 \square $n \rightarrow 5n$

Which is better 2n, $\frac{3n}{2}$, or 5n? Java uses $\frac{3n}{2}$ to minimized wasted space. What happens if we change our resize rule to each of the following:

n → n + 1 This is really bad! We can only amortize over the single operation which gives us:

$$\frac{n}{1} = \mathcal{O}(n)$$

■ $n \rightarrow \frac{3n}{2}$ This still works. Now, we go over the next $\frac{3n}{2} - n$ operations:

$$\frac{n+(n/2-1)\times 1}{\frac{n}{2}} = \mathcal{O}(1)$$

■ $n \rightarrow 5n$ This is good too:

$$\frac{n+(4n-1)\times 1}{4n} = \mathcal{O}(1)$$

Which is better 2n, $\frac{3n}{2}$, or 5n?

Java uses $\frac{3n}{2}$ to minimized wasted space.