
Adam Blank Winter 2017Lecture 6a

CSE
332

Data Structures and Parallelism

CSE 332: Data Structures and Parallelism

More Recurrences
T(n)

T(n/2)

T(n/4)

. . .

T(1)T(1)

. . .

T(1)T(1)

T(n/4)

. . .

T(1)T(1)

. . .

T(1)T(1)

T(n/2)

T(n/4)

. . .

T(1)T(1)

. . .

T(1)T(1)

T(n/4)

. . .

T(1)T(1)

. . .

T(1)T(1)

P1 De-Brief 1

You did something substantial!

You worked with “real world software”

You honed your debugging skills

You “transitioned” from 143 to 332

You enjoyed it?? (okay, not the debugging, but. . .)

Oh, some presents. . .
tokens++

EX06 Now Due Monday; EX07 is dead :(

While we’re here. . .

Solving the reverse Recurrence 2

T(n) =
⎧⎪⎪⎨⎪⎪⎩

d0 if n = 0
c0+c1n+T(n−1) otherwise

T(n) = (c0+c1n) + T(n−1)
= (c0+c1n) + (c0+c1(n−1)) + T(n−2)
= (c0+c1n) + (c0+c1(n−1)) + (c0+c1(n−2))+ ...+(c0+c1(1))+d0

=
n−1

∑
i=0
(c0+c1(n− i)) + d0

=
n−1

∑
i=0

c0+
n−1

∑
i=0

c1(n− i) + d0

= nc0+c1

n

∑
i=1

i + d0

= nc0+c1(
n(n+1)

2
) + d0

=O(n2)

Solving Linear Recurrences 3

A recurrence where we solve some constant piece of the problem (e.g.
“-1”, “-2”, etc.) is called a Linear Recurrence.

We solve these like we did above by Unrolling the Recurrence.

This is a fancy way of saying “plug the definition into itself until a
pattern emerges”.

Now, back to mergesort.

Analyzing Merge Sort 4

Merge Sort
1 sort(L) {
2 if (L.size() < 2) {
3 return L;
4 }
5 else {
6 int mid = L.size() / 2;
7 return merge(
8 sort(L.subList(0, mid)),
9 sort(L.subList(mid, L.size()))

10);
11 }
12 }

First, we need to find the recurrence:

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+c1n+2T(n/2) otherwise

This recurrence isn’t linear! This is a “divide and conquer”
recurrence.

Analyzing Merge Sort 5

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+c1n+2T(n/2) otherwise

This time, there are multiple possible approaches:

Unrolling the Recurrence

T(n) = (c2+c1n) + 2(c2+c1n+2T(n/4))
= (c2+c1n) + 2(c2+c1n+2(c2+c1n+2T(n/8)))
= c2+2c2 + 4c2+ ...+argh+ ...

This works, but I’d rarely recommend it.

Insight: We’re branching in this recurrence. So, represent it as a tree!

Merge Sort: Solving the Recurrence 6

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+c1n+2T(n/2) otherwise

T(n)

Merge Sort: Solving the Recurrence 7

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+c1n+2T(n/2) otherwise

n

T(n/2)T(n/2)

Merge Sort: Solving the Recurrence 8

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+c1n+2T(n/2) otherwise

n

n/2

T(n/4)T(n/4)

n/2

T(n/4)T(n/4)

Merge Sort: Solving the Recurrence 9

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+c1n+2T(n/2) otherwise

n

n/2

n/4

. . .

T(1)T(1)

. . .

T(1)T(1)

n/4

. . .

T(1)T(1)

. . .

T(1)T(1)

n/2

n/4

. . .

T(1)T(1)

. . .

T(1)T(1)

n/4

. . .

T(1)T(1)

. . .

T(1)T(1)

Merge Sort: Solving the Recurrence 10

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+c1n+2T(n/2) otherwise

lg(n)

n

n/2

n/4

. . .

dd

. . .

dd

n/4

. . .

dd

. . .

dd

n/2

n/4

. . .

dd

. . .

dd

n/4

. . .

dd

. . .

dd

n

n

n

n

dn

Since the recursion tree has height lg(n) and each row does n work, it
follows that T(n) ∈O(n lg(n)).

sum Examples #1 11

Find A Big-Oh Bound For The Worst Case Runtime
1 sum(n) {
2 if (n < 2) {
3 return n;
4 }
5 return 2 + sum(n − 2);
6 }

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d0 if n = 1
c0+T(n−2) otherwise

T(n) = c0+c0+⋅ ⋅ ⋅+c0+d0

= c0(
n
2
)+d0

=O(n)

sum Examples #2 12

Find A Big-Oh Bound For The Worst Case Runtime
1 binarysearch(L, value) {
2 if (L.size() == 0) {
3 return false;
4 }
5 else if (L.size() == 1) {
6 return L[0] == value;
7 }
8 else {
9 int mid = L.size() / 2;

10 if (L[mid] < value) {
11 return binarysearch(L.subList(mid + 1, L.size()), value);
12 }
13 else {
14 return binarysearch(L.subList(0, mid), value);
15 }
16 }
17 }

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+T(n/2) otherwise

sum Examples #2 13

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+T(n/2) otherwise

lg(n)

c0

c0

c0

. . .

d1

So, T(n) = c0(lg(n)−1)+d1 =O(lgn).

Master Theorem 14

Consider a recurrence of the form:

T(n) =
⎧⎪⎪⎨⎪⎪⎩

d if n = 1
aT (n

b)+nc otherwise

Then,
If logb(a) < c, then T(n) =Θ(nc).
If logb(a) = c, then T(n) =Θ(nc lg(n)).
If logb(a) > c, then T(n) =Θ(nlogb(a)).

Sanity Check: For Merge Sort, we have a = 2,b = 2,c = 1. Then,
log2(2) = 1 = 1. So, T(n) = n lgn.

Proving the First Case of Master Theorem 15

T(n) =
⎧⎪⎪⎨⎪⎪⎩

d if n = 1
aT (n

b)+nc otherwise

We assume that logb(a) < c. Then, unrolling the recurrence, we get:

T(n) = nc+aT(n/b)
= nc+a((n/b)c+aT(n/b2))

= nc+a(n/b)c+a2(n/b2)c+⋅ ⋅ ⋅+alogb(n)(n/blogb n)c

=
logb(n)
∑
i=0

ai(nc

bic)

= nc
logb(n)
∑
i=0
(a

bc)
i

= nc
⎛
⎜
⎝

(a
bc)

logb(n)+1−1

(a
bc)−1

⎞
⎟
⎠
≈ nc((a

bc)
logb(n)

) ≈ nc

Adam Blank Winter 2017Lecture 6b

CSE
332

Data Structures and Parallelism

CSE 332: Data Structures and Parallelism

Amortized Analysis

Stack ADT & ArrayStack Analysis 1

Stack ADT

push(val) Adds val to the stack.
pop() Returns the most-recent item not already returned by a

pop. (Errors if empty.)
peek() Returns the most-recent item not already returned by a

pop. (Errors if empty.)
isEmpty() Returns true if all inserted elements have been returned by

a pop.

Let’s analyze the time complexity for these various methods. (You know
how they work, because you just implemented them!)

Method Time Complexity
isEmpty() Θ(1)
peek() Θ(1)
pop() Θ(1)
push(val) ??

push is actually slightly more interesting.

Analyzing push for an ArrayStack 2

Best Case

There’s more space in the underlying array! Then, it’s Ω(1).

Worst Case

If there’s no more space, we double the size of the array, and copy all the
elements. So, it’s O(n).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Insight: Our analysis seems wrong. Saying linear time feels wrong.

Analyzing push for an ArrayStack 2

Best Case
There’s more space in the underlying array! Then, it’s Ω(1).

Worst Case

If there’s no more space, we double the size of the array, and copy all the
elements. So, it’s O(n).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Insight: Our analysis seems wrong. Saying linear time feels wrong.

Analyzing push for an ArrayStack 2

Best Case
There’s more space in the underlying array! Then, it’s Ω(1).

Worst Case
If there’s no more space, we double the size of the array, and copy all the
elements. So, it’s O(n).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Insight: Our analysis seems wrong. Saying linear time feels wrong.

Analyzing push for an ArrayStack 3

This is where “amortized analysis” comes in. Sometimes, we have a very
rare expensive operation that we can “charge” to other operations.

Intuition: Rent, Tuition
You pay one big sum for a long period of time, but you can afford it
because it happens very rarely.

Back to ArrayStack

Say we have a full Stack of size n. Then, consider the next n pushes:
The next push will take O(n) (to resize the array to size 2n)
The n−1 operations after that will all be O(1), because we know we
have enough space

Considering these operations in aggregate, we have n operations that take
(c0+c1n)+(n−1)×c2 time.
So, how long does each operation take:

(c0+c1n)+(n−1)×c2

n
≤

nmax(c0,c2)+c1n
n

=max(c0,c2)+c1 =O(1)

Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1

This is really bad! We can only amortize over the single operation
which gives us:

n
1
=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2 −n operations:

n+(n/2−1)×1
n
2

=O(1)

n→ 5n

This is good too:

n+(4n−1)×1
4n

=O(1)

Which is better 2n, 3n
2 , or 5n?

Java uses 3n
2 to minimized wasted space.

Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1
This is really bad! We can only amortize over the single operation
which gives us:

n
1
=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2 −n operations:

n+(n/2−1)×1
n
2

=O(1)

n→ 5n

This is good too:

n+(4n−1)×1
4n

=O(1)

Which is better 2n, 3n
2 , or 5n?

Java uses 3n
2 to minimized wasted space.

Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1
This is really bad! We can only amortize over the single operation
which gives us:

n
1
=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2 −n operations:

n+(n/2−1)×1
n
2

=O(1)

n→ 5n

This is good too:

n+(4n−1)×1
4n

=O(1)

Which is better 2n, 3n
2 , or 5n?

Java uses 3n
2 to minimized wasted space.

Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1
This is really bad! We can only amortize over the single operation
which gives us:

n
1
=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2 −n operations:

n+(n/2−1)×1
n
2

=O(1)

n→ 5n
This is good too:

n+(4n−1)×1
4n

=O(1)

Which is better 2n, 3n
2 , or 5n?

Java uses 3n
2 to minimized wasted space.

