
Analyzing push for an ArrayStack 2

Best Case

There’s more space in the underlying array! Then, it’s W(1).

Worst Case

If there’s no more space, we double the size of the array, and copy all the
elements. So, it’s O(n).

Insight: Our analysis seems wrong. Saying linear time feels wrong.



Analyzing push for an ArrayStack 2

Best Case
There’s more space in the underlying array! Then, it’s W(1).
Worst Case
If there’s no more space, we double the size of the array, and copy all the
elements. So, it’s O(n).

Insight: Our analysis seems wrong. Saying linear time feels wrong.



Analyzing push for an ArrayStack 3

This is where “amortized analysis” comes in. Sometimes, we have a very

rare expensive operation that we can “charge” to other operations.

Intuition: Rent, Tuition
You pay one big sum for a long period of time, but you can a�ord it
because it happens very rarely.

Back to ArrayStack

Say we have a full Stack of size n. Then, consider the next n pushes:

The next push will take O(n) (to resize the array to size 2n)
The n−1 operations after that will all be O(1), because we know we
have enough space

Considering these operations in aggregate, we have n operations that take(c
0

+c
1

n)+(n−1)×c
2

time.
So, how long does each operation take:

(c
0

+c
1

n)+(n−1)×c
2

n
≤ nmax(c

0

,c
2

)+c
1

n
n

=max(c
0

,c
2

)+c
1

=O(1)



Analyzing push for an ArrayStack 3

This is where “amortized analysis” comes in. Sometimes, we have a very

rare expensive operation that we can “charge” to other operations.

Intuition: Rent, Tuition
You pay one big sum for a long period of time, but you can a�ord it
because it happens very rarely.

Back to ArrayStack

Say we have a full Stack of size n. Then, consider the next n pushes:
The next push will take O(n) (to resize the array to size 2n)
The n−1 operations after that will all be O(1), because we know we
have enough space

Considering these operations in aggregate, we have n operations that take(c
0

+c
1

n)+(n−1)×c
2

time.
So, how long does each operation take:

(c
0

+c
1

n)+(n−1)×c
2

n
≤ nmax(c

0

,c
2

)+c
1

n
n

=max(c
0

,c
2

)+c
1

=O(1)



Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1

This is really bad! We can only amortize over the single operation
which gives us:

n
1

=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2

−n operations:

n+(n�2−1)×1

n
2

=O(1)

n→ 5n

This is good too:

n+(4n−1)×1

4n
=O(1)

Which is better 2n, 3n
2

, or 5n?
Java uses

3n
2

to minimized wasted space.


	Amortized Analysis of ArrayStack

