Analyzing push for an ArrayStack
Best Case

Worst Case

Analyzing push for an ArrayStack

Best Case

There's more space in the underlying array! Then, it's $\Omega(1)$.

Worst Case

If there's no more space, we double the size of the array and copy all the elements. So, it's $\mathcal{O}(n)$.

Insight: Our analysis seems wrong. Saying linear time feels wrong.

This is where "amortized analysis" comes in. Sometimes, we have a very rare expensive operation that we can "charge" to other operations.

Intuition: Rent, Tuition
You pay one big sum for a long period of time, but you can afford it because it happens very rarely.

Back to ArrayStack

Say we haye a full Stack of size n. Then, consider the next n pushes:

This is where "amortized analysis" comes in. Sometimes, we have a very rare expensive operation that we can "charge" to other operations.

Intuition: Rent, Tuition
You pay one big sum for a long period of time, but you can afford it because it happens very rarely.

Back to ArrayStack

Say we have a full Stack of size n. Then, consider the next n pushes:

- The next push will take $\mathcal{O}(n)$ (to resize the array to size $2 n$)
- The $n-1$ operations after that will all be $\mathcal{O}(1)$, because we know we have enough space

$$
n+(n-1) \cdot 1
$$

What happens if we change our resize rule to each of the following:
$n \rightarrow n+1$

