CSE 332: Data Abstractions

Summations

Gauss' Summation

Let $S=\sum_{i=0}^{n} i$.

$$
\begin{array}{rlccccccccc}
S & = & 1 & + & 2 & + & \cdots & + & (n-1) & + & n \\
+S & = & n & +(n-1) & + & \cdots & + & 2 & + & 1 \\
\hline 2 S & = & (n+1) & +(n+1) & + & \cdots & + & (n+1) & + & (n+1)
\end{array}
$$

So, $S=\frac{n(n+1)}{2}$.

Infinite Geometric Series

Let $S=\sum_{i=0}^{\infty} x^{i}$.

$$
\begin{aligned}
& S=1+x+x^{2}+\cdots+x^{n-1}+x^{n}+x^{n+1}+\cdots \\
& -x S=-x+-x^{2}+\cdots+-x^{n-1}+-x^{n}+-x^{n+1}+\cdots \\
& S-x S=1
\end{aligned}
$$

So, $S=\frac{1}{1-x}$.
Finite Geometric Series
Let $S=\sum_{i=0}^{n} x^{i}$.
We know, from the above, that $\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$. Multiplying both sides by x^{n+1}, we get the equality:

$$
x^{n+1} \sum_{i=0}^{\infty} x^{i}=\frac{x^{n+1}}{1-x}
$$

Subtracting the second equality from the first gives us:

$$
\begin{aligned}
\left(\frac{1}{1-x}\right)-\left(\frac{x^{n+1}}{1-x}\right) & =\left(\sum_{i=0}^{\infty} x^{i}\right)-\left(x^{n+1} \sum_{i=0}^{\infty} x^{i}\right) \\
& =\left(\sum_{i=0}^{\infty} x^{i}\right)-\left(\sum_{i=0}^{\infty} x^{i+n+1}\right) \\
& =\left(\sum_{i=0}^{\infty} x^{i}\right)-\left(\sum_{i=n+1}^{\infty} x^{i}\right) \\
& =\left(\sum_{i=0}^{n} x^{i}\right)
\end{aligned}
$$

So, $\sum_{i=0}^{n} x^{i}=\left(\frac{1}{1-x}\right)-\left(\frac{x^{n+1}}{1-x}\right)=\frac{1-x^{n+1}}{1-x}$.

Yes, there are potentially issues of convergence here. These are not proofs. We are viewing this as a way to think about series.

Guess and Check

Let $S=\sum_{i=0}^{n} i^{2}$. Since we're summing up squares, let's guess that it's $\mathcal{O}\left(n^{3}\right)$. If it is, then we know it's of the form:

$$
a n^{3}+b n^{2}+c n+d
$$

Let's look at small examples:

- $n=0 \rightarrow 0$
- $n=1 \rightarrow 1$
- $n=2 \rightarrow 5$
- $n=3 \rightarrow 14$
- $n=4 \rightarrow 30$

Plugging these answers in, we get the following equations:

- $d=0$
- $a+b+c=1$
- $8 a+4 b+2 c=5$
- $27 a+9 b+4 c=14$

Solving these equations gives us: $d=0, c=\frac{1}{6}, b=\frac{1}{2}, a=\frac{1}{3}$
So, $\sum_{i=0}^{n} i^{2}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}$.

