Lecture 5 Winter 2017

335

Data Structures and Parallelism

Adam Blank

Summations
Warm-Ups
Analyzing Recursive Code

Generating and Solving Recurrences

Warm-Up #1: append p)

Let x and L be LinkedList Nodes.

Analyzing append
append(x, L) {
Node curr = L;
while (curr != null & curr.next != null) {
curr = curr.next;
}

curr.next = x;

NOoO O AWN

}
What is ...

m a lower bound on the time complexity of append?
Q(n), because we always must do n iterations of the loop.

m an upper bound on the time complexity of append?
O(n), because we never do more than n iterations of the loop.

Since we can upper and lower bound the time complexity with the same
complexity class, we can say append runs in ©(n).

Algorithm Analysis 2

T(n)

A

T(n/2) T(n/2)

NN

T(n/4) T(n/4) T(n/4) T(n/4)

ANVANVA

AANAANANND

(1) (1) T(1) T() TQ) T() T() TQ) T() T() TQ) T() T() T() T(O) T(1)

Some Common Series 1

n 1
m Gauss' Sum: Zi:M
i=0 2
. -
m Infinite Geometric Series: Y x'= g when |x| < 1.
i=0 -x

n+1

noo1-
m Finite Geometric Series:) x'= , when x# 1.

i=0

Pre-Condition: L; and L, are sorted.
Post-Condition: Return value is sorted.

Merge

1 merge(L;, Ly) {

2 pl, p2 = 0;

3 While both lists have more elements:

4 Append the smaller element to L.

5 Increment pl or p2, depending on which had the smaller element
6 Append any remaining elements from L; or L, to L

7 return L

8

}
What is the. .. (remember the lists are Nodes)

m best case # of comparisons of merge?
Q(1). Consider the input: [0], [1, 2, 3, 4, 5, 6].

m worst case # of comparisons of merge?
O(n). Consider the input: [1, 3, 51, [2, 4, 6].

m worst case space usage of merge?
O(n), because we allocate a constant amount of space per element.

Consider the following code:

What is a recurrence?

Merge Sort
1 sort(L) {
2 if (L.size() < 2) { . .
3 return L; In CSE 311, you saw a bunch of questions like:
4 }
5 else { Induction Problem
o Tetum merge S E Let fy=0,fi = 1. f, = fuo1 + fos for all n>2. Prove f, <2 for all neN.
3 zgﬁit::ﬂgﬁ:ﬂgidmlﬁ?;ize())) (Remember the Fibonacci Numbers? You'd better bet they're going to
10)k show up in this course!)
11 }
12}
That's a recurrence. That's it.
What is the worst case/best case # of comparisons of sort? Definition (Recurrence)

A recurrence is a recursive definition of a function in terms of smaller

Yeah, yeah, it's O(nlgn), but why? values.

Merge Sort is hard; so. .. 6 Non-Recursive Work 7

Let's start with trying to analyze this code:

LinkedList Reversal . Linked(LLi)s: Reversal
1 reverse(L) { revt::rse .
2 if (L == null) { return null; } 2 if (L == null) {_:et“r" nul; } . //0(1) o
3 else if (L.next == null) { return L; } 3 else if (L.next == null) { return L; } //0(1)
4 else { 4 else {
5 Node front = L; 5 Node front_= L; ! //0(1)
6 Node rest = L.next; 6 Node et = Loy //0(1)
7 L.next = null; ; L.next = null; //0(1)
8
9 Node restReversed = reverse(rest); 9 Node re;tReversed = reversefrest);
10 append(front, restReversed); 1‘1) append(front, restReversed); //0(n)
11 } }
12 } 12}

Notice that append is the same function from the beginning of lecture Non-Recursive Work: O(n), which means we can write it as co+cn for
that had runtime O(n). some constants ¢y and ¢;.

So, what is the time complexity of reverse?

We split the work into two pieces:
m Non-Recursive Work
m Recursive Work

Non-Recursive Work 8 reverse Recurrence 9

LinkedList Reversal LinkedList Reversal
1 reverse(L) { 1 reverse(L) {
2 if (L == null) { return null; } 2 if (L == null) { [return null; }
3 else if (L.next == null) { return L; } 3 if (L.next == null) { return L; }
4 else { 4 else {
5 Node front = L; 5 Node front = L;
6 Node rest = L.next; 6 Node rest = L.next;
7 L.next = null; 7 L.next = null;
8 8
9 Node restReversed = reverse(rest); 9 Node restReversed = reverse(rest);
10 append(front, restReversed); 10 append(front, restReversed);
11 } 11 }
12 } 12 }
Non-Recursive Work: O(n), which means we can write it as ¢ +cn for
some constants ¢ and cy.
Recursive Work: The work it takes to do reverse on a list one smaller. do if n=0
Putting these together almost gives us the recurrence: T(n)=1do ifn=1
co+cin+T(n—1) otherwise
T(n)=co+cin+T(n-1) ()
) . | Now, we need to solve the recurrence.
We're missing the base case!

Solving the reverse Recurrence 10 Solving Linear Recurrences

dy ifn=0 A recurrence where we solve some constant piece of the problem (e.g.
T(n)={d, ifn=1 “-1", “-2", etc.) is called a Linear Recurrence.

co+cin+T(n-1) otherwise

T(n)=(co+cin) + T(n-1)
=(co+cin) + (co+ci(n-1)) + T(n-2)
=(co+cin) + (co+ci(n-1)) + (co+ci(n=2))+...+(co+c1(2))+do+dy
n-2

We solve these like we did above by Unrolling the Recurrence.

= Z (co+ci(n—1i)) + 2dy
i=l
n-2 n-2
=Y co+ Y ci(n-i) + 2dy
0 = | This is a fancy way of saying “plug the definition into itself until a
n— "
=(n-1)co+c; Zi + 2dy pattern emerges”.
i=1

R (S

=0>n?)

Today’s Takeaways! ﬁ

m Understand that Big-Oh is just an “upper bound” and Big-Omega is
just a “lower bound”

m Know how to make a recurrence from a recursive program
m Understand what a linear recurrence is
m Be able to find a closed form linear recurrences

m Know the common summations

