Lecture 2

Data Structures and Parallelism

CSE 332: Data Structures and Parallelism

Algorithm Analysis 1

public void run() {
 //for (int i = 0; i < 1000000; i++) {
 //doLongCalculation();
 //anotherAnalysis();
 //solvePNP();
 //}
 System.out.Println(*Done!");
 };
}</pre>

Outline

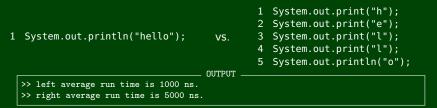
1 Comparing Algorithms

2 Asymptotic Analysis

Comparing Programs

In 143, we asked:

What does it mean to have an "efficient program"?



We're measuring in NANOSECONDS!

Both of these run **very very** quickly. The first is definitely better style, but it's not "more efficient."

Comparing Programs: Timing

hasDuplicate

Given a sorted int array, determine if the array has a duplicate.

Algorithm 1

For each pair of elements, check if they're the same.

Algorithm 2

For each element, check if it's equal to the one after it.

Why Not Time Programs?

Timing programs is prone to error (not reliable or portable):

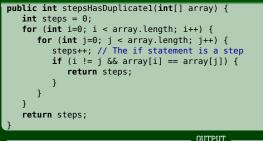
- Hardware: processor(s), memory, etc.
- OS, Java version, libraries, drivers
- Other programs running
- Implementation dependent
- Can we even time an algorithm?

Comparing Programs: # Of Steps

hasDuplicate

Given a sorted int array, determine if the array has a duplicate.

Example



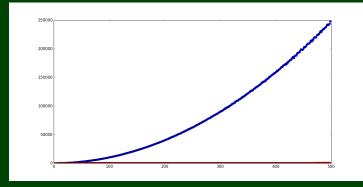
>> hasDuplicate1 average number of steps is 9758172 steps. >> hasDuplicate2 average number of steps is 170 steps.

Why Not Count Steps in Programs?

- Can we even count steps for an algorithm?
- We must do this via testing; so, we may miss worst-case input!
- We must do this via testing; so, we may miss best-case input!

Comparing Programs: Plotting

Instead, let's try running on arrays of size 1, 2, 3, ..., 1000000, and plot:



Why Not Plot Steps in Programs?

- Can we even count steps for an algorithm?
- We must do this via testing; so, we may miss worst-case input!
- We must do this via testing; so, we may miss best-case input!

We want to compare **algorithms**, not programs. In general, there are many answers (clarity, security, etc.). Performance (space, time, etc.) are generally among the most important.

Only consider large inputs (any algorithm will work on 10)

 Answer will be independent of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and counting steps on some test cases"

Can do analysis before coding!

Comparing Code: Analytically

Basic Operations take "some amount of" Constant Time

- Arithmetic (fixed-width)
- Variable Assignment
- Access one Java field or array index
- etc.

(This is an approximation of reality: a very useful "lie".)

Complex Operations

Consecutive Statements. Sum of time of each statement Conditionals. Time of condition + max(ifBranch, elseBranch) Loops. Number of iterations * Time for Loop Body Function Calls. Time of function's body Recursive Function Calls. Solve Recurrence

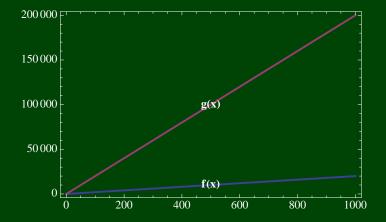
```
public boolean hasDuplicate1(int[] array) {
   for (int i=0; i < array.length; i++) { // 1</pre>
      for (int j=0; j < array.length; j++) { // 1</pre>
                                                             > 2N + 1 > (2N + 1)(N + 1)
         if (i != j && array[i] == array[j]) { // 1
            return true;
                                       // 1
   return false;
                                       // 1
}
public boolean hasDuplicate2(int[] array) {
   for (int i=0; i < array.length - 1; i++) { // 1</pre>
      if (array[i] == array[i+1]) { // 1
                                                           2N
         return true;
                                                                              2N + 1
   return false:
                                     // 1
```

Outline

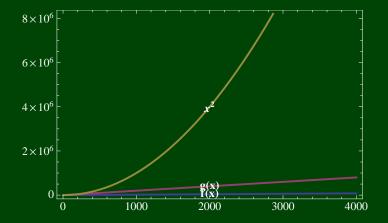
Comparing Algorithms

2 Asymptotic Analysis

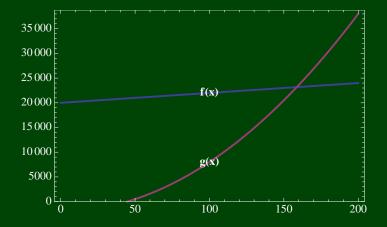
Investigating with Pictures



Should we consider these "the same"?



Probably a good idea, since they seem to be growing at the same rate. For reference, the function that dwarfs them both is x^2 .



Here's two functions, f(x) and g(x). Ultimately, g(x) will grow much faster than f(x), but at the beginning, it is smaller.

Asymptotics

We'd like to be able to compare two functions. Intuitively, we want an operation like " \leq " (e.g. $4 \leq 5$), but for functions.

If we have f and 4f, we should consider them the same:

 $f \leq g$ when...

 $f \leq cg$ where c is a constant and $c \neq 0$.

We also care about all values of the function that are big enough:

 $f \leq g$ when...

For all *n* "large enough", $f(n) \le cg(n)$, where $c \ne 0$ For some $n_0 \ge 0$, for all $n \ge n_0$, $f(n) \le cg(n)$, where $c \ne 0$ For some $c \ne 0$, for some $n_0 \ge 0$, for all $n \ge n_0$, $f(n) \le cg(n)$

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \le cg(n)$

Formally, we write this as $f \in \mathcal{O}(g)$.

True or False?

- (1) $4+3n \in \mathcal{O}(n)$
- (2) $4 + 3n = \mathcal{O}(1)$
- (3) 4+3n is $\mathcal{O}(n^2)$
- (4) $n+2\log n \in \mathcal{O}(\log n)$
- (5) $\log n \in \mathcal{O}(n+2\log n)$

True or False?

(1)
$$4+3n \in \mathcal{O}(n)$$
 True $(n=n)$

$$(2) \quad 4+3n=\mathcal{O}(1)$$

(3)
$$4+3n$$
 is $\mathcal{O}(n^2)$

(4)
$$n+2\log n \in \mathcal{O}(\log n)$$

(5) $\log n \in \mathcal{O}(n+2\log n)$

True or False?

(1)
$$4+3n \in \mathcal{O}(n)$$
 True $(n=n)$

(2)
$$4+3n = O(1)$$
 False: ($n >> 1$)

(3)
$$4+3n$$
 is $\mathcal{O}(n^2)$

(4)
$$n+2\log n \in \mathcal{O}(\log n)$$

(5)
$$\log n \in \mathcal{O}(n+2\log n)$$

True or False?

(1)
$$4+3n \in \mathcal{O}(n)$$
 True $(n=n)$

(2)
$$4+3n = O(1)$$
 False: $(n >> 1)$

(3)
$$4+3n$$
 is $\mathcal{O}(n^2)$ True: $(n \le n^2)$

(4)
$$n+2\log n \in \mathcal{O}(\log n)$$

(5)
$$\log n \in \mathcal{O}(n+2\log n)$$

True or False?

(1)
$$4+3n \in \mathcal{O}(n)$$
 True $(n=n)$

(2)
$$4 + 3n = O(1)$$
 False: $(n >> 1)$

(3)
$$4+3n$$
 is $\mathcal{O}(n^2)$ True: $(n \le n^2)$

(4)
$$n+2\log n \in \mathcal{O}(\log n)$$
 False: $(n >> \log n)$

(5) $\log n \in \mathcal{O}(n+2\log n)$

True or False?

(1)
$$4+3n \in \mathcal{O}(n)$$
 True $(n=n)$

(2)
$$4 + 3n = \mathcal{O}(1)$$
 False: $(n >> 1)$

(3)
$$4+3n$$
 is $\mathcal{O}(n^2)$ True: $(n \le n^2)$

(4)
$$n+2\log n \in \mathcal{O}(\log n)$$
 False: $(n >> \log n)$

(5) $\log n \in \mathcal{O}(n+2\log n)$ True: $(\log n \le n+2\log n)$

True or False?

(1)
$$4+3n \in \mathcal{O}(n)$$
 True $(n=n)$

(2)
$$4+3n = O(1)$$
 False: $(n >> 1)$

(3)
$$4+3n$$
 is $\mathcal{O}(n^2)$ True: $(n \le n^2)$

(4)
$$n+2\log n \in \mathcal{O}(\log n)$$
 False: $(n >> \log n)$

(5) $\log n \in \mathcal{O}(n+2\log n)$ True: $(\log n \le n+2\log n)$

Big-Oh Gotchas

- $\mathcal{O}(f)$ is a **set**! This means we should treat it as such.
- If we know $f(n) \in \mathcal{O}(n)$, then it is also the case that $f(n) \in \mathcal{O}(n^2)$, and $f(n) \in \mathcal{O}(n^3)$, etc.
- Remember that small cases, really don't matter. As long as it's eventually an upper bound, it fits the definition.

True or False?

(1)
$$4+3n \in \mathcal{O}(n)$$
 True $(n=n)$

(2)
$$4+3n = O(1)$$
 False: $(n >> 1)$

(3)
$$4+3n$$
 is $\mathcal{O}(n^2)$ True: $(n \le n^2)$

(4)
$$n+2\log n \in \mathcal{O}(\log n)$$
 False: $(n >> \log n)$

(5) $\log n \in \mathcal{O}(n+2\log n)$ True: $(\log n \le n+2\log n)$

Big-Oh Gotchas

- $\mathcal{O}(f)$ is a **set**! This means we should treat it as such.
- If we know $f(n) \in \mathcal{O}(n)$, then it is also the case that $f(n) \in \mathcal{O}(n^2)$, and $f(n) \in \mathcal{O}(n^3)$, etc.
- Remember that small cases, really don't matter. As long as it's eventually an upper bound, it fits the definition.

Okay, but we haven't actually shown anything. Let's prove (1) and (2).

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \le cg(n)$

Formally, we write this as $f \in \mathcal{O}(g)$.

We want to prove $4 + 3n \in \mathcal{O}(n)$. That is, we want to prove:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). 4 + 3n \le cn$

Proof Strategy

- Choose a c, n_0 that work.
- Prove that they work for all $n \ge n_0$.

Proof

Choose c = 5 and $n_0 = 5$. Then, note that $4 + 3n \le 4n \le 5n$, because $n \ge 5$. It follows that $4 + 3n \in \mathcal{O}(n)$.

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \le cg(n)$

Formally, we write this as $f \in \mathcal{O}(g)$.

We want to prove $4 + 3n + 4n^2 \in \mathcal{O}(n^3)$.

Scratch Work

We want to choose a c and n_0 such that $4+3n+4n^2 \le cn^3$. So, manipulate the equation:

$$4 + 3n + 4n^2 \le 4n^3 + 3n^3 + 4n^3 = 11n^3$$

For this to work, we need $4 \le 4n^3$ and $3n \le 3n^3$. $n \ge 1$ satisfies this.

Proof

Choose c = 11 and $n_0 = 1$. Then, note that $4 + 3n + 4n^2 \le 4n^3 + 3n^3 + 4n^3 = 11n^3$, because $n \ge 1$. It follows that $4 + 3n + 4n^2 \in \mathcal{O}(n^3)$.

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \le cg(n)$

Formally, we write this as $f \in \mathcal{O}(g)$.

Definition (Big-Omega)

We say a function $f: A \rightarrow B$ **dominates** a function $g: A \rightarrow B$ when:

$$\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \ge cg(n)$$

Formally we write this as $f \in \Omega(g)$.

Definition (Big-Theta)

We say a function $f: A \to B$ grows at the same rate as a function $g: A \to B$ when: $f \in \mathcal{O}(g)$ and $f \in \Omega(g)$ Formally we write this as $f \in \Theta(g)$.

Important: You need not use the same c value for \mathcal{O} and Ω to prove Θ .

(1) $4 + 3n \in \Theta(n)$ (2) 4 + 3n is $\Theta(n^2)$

(1) $4+3n \in \Theta(n)$ True (2) 4+3n is $\Theta(n^2)$

(1) $4+3n \in \Theta(n)$ True (2) 4+3n is $\Theta(n^2)$ False

True or False?

(1) $4+3n \in \Theta(n)$ True (2) 4+3n is $\Theta(n^2)$ False

If you want to say "f is a tight bound for g", do not use \mathcal{O} -use Θ .

It's the Worst Case!

Remember, we're analyzing the **worst** case **time**! What else can we analyze?

Space?

Average Case?

Best Case?

Time over multiple operations?

Because log_2 is so common in CSE, we abbreviate it lg. When it comes to Big-Oh, all log bases are the same:

Recall the log change of base formula:

$$\log_b(x) = \frac{\log_d(x)}{\log_d(b)}$$

Then, to show $\log_b(n) \in \mathcal{O}(\log_d(n))$, note the following:

For all
$$n \ge 0$$
, we have $\log_b(x) = \frac{1}{\log_d(b)} \log_d(x)$.

Final Note

Which is Better?

 $n^{1/10}$ or $\log n$

- $\log n$ grows more slowly (Big-Oh)
- **•** . . . But the cross-over point is around 5×10^{17}

There are many ways to compare algorithms

Understand formal Big-Oh, Big-Omega, Big-Theta

Be able to prove any of these