Big-Oh Examples

True or False?

(1)
$$4+3n \in \mathcal{O}(n)$$

$$(2) \quad 4+3n=\mathcal{O}(1)$$

(3)
$$4+3n$$
 is $\mathcal{O}(n^2)$

(4)
$$n+2\log n \in \mathcal{O}(\log n)$$

(5) $\log n \in \mathcal{O}(n+2\log n)$

Big-Oh Examples

True or False?

(1)
$$4 + 3n \in \mathcal{O}(n)$$
 True $(n = n)$
(2) $4 + 3n = \mathcal{O}(1)$ False: $(n \gg 1)$
(3) $4 + 3n$ is $\mathcal{O}(n^2)$ True: $(n \le n^2)$
(4) $n + 2\log n \in \mathcal{O}(\log n)$
(5) $\log n \in \mathcal{O}(n + 2\log n)$

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \le cg(n)$

Formally, we write this as $f \in \mathcal{O}(g)$.

We want to prove $4 + 3n \in \mathcal{O}(n)$. That is, we want to prove:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). 4 + 3n \le cn$

Big-Oh Proofs 2

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \le cg(n)$

Formally, we write this as $f \in \mathcal{O}(g)$.

We want to prove $4 + 3n + 4n^2 \in \mathcal{O}(n^3)$.

 $4 + 3n + 4n^{2} \le 4n^{3} + 3h^{3} + 4h^{3} < cn^{3}$