Big-Oh Examples

True or False?
(1) $4+3 n \in \mathcal{O}(n)$
(2) $4+3 n=\mathcal{O}(1)$
(3) $4+3 n$ is $\mathcal{O}\left(n^{2}\right)$
(4) $n+2 \log n \in \mathcal{O}(\log n)$
(5) $\log n \in \mathcal{O}(n+2 \log n)$

Big-Oh Examples

True or False?
(1) $4+3 n \in \mathcal{O}(n)$ True ($n=n$)
(2) $4+3 n=\mathcal{O}(1)$ False: $(n \gg 1)$
(3) $4+3 n$ is $\mathcal{O}\left(n^{2}\right)$ True: $\left(n \leq n^{2}\right)$
(4) $n-\sqrt{\log y})=\mathcal{O}(\log n)$
(5) $\log \overrightarrow{n \in \mathcal{O}}(n+2 \log n)$

Big-Oh Proofs

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$.
We want to prove $4+3 n \in \mathcal{O}(n)$. That is, we want to prove:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot 4+3 n \leq c n
$$

Proof Strategy

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

$$
\exists\left(c, n_{0}>0\right) . \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$.
We want to prove $4+3 n+4 n^{2} \in \mathcal{O}\left(n^{3}\right)$.

$$
4+3 n+4 n^{2} \leq 4 n^{3} L 3 n^{3}+4 n^{3}<c n^{3}
$$

