

Asymptotics
We'd like to be able to compare two functions. Intuitively, we want an operation like " \leq " (e.g. $4 \leq 5$), but for functions.

If we have f and $4 f$, we should consider them the same: $f \leq g$ when. . .

$$
h \geqslant n_{0} \rightarrow f(n)<\rho(n)
$$

Asymptotics

We'd like to be able to compare two functions. Intuitively, we want an operation like " \leq " (e.g. $4 \leq 5$), but for functions.

If we have f and $4 f$, we should consider them the same:
$f \leq g$ when. . .
$f \leq c g$ where c is a constant and $c \neq 0$.
We also care about all values of the function that are big enough:
$f \leq g$ when. . .
For all n "large enough", $f(n) \leq c g(n)$, where $c \neq 0$
For some $n_{0} \geq 0$, for all $n \geq n_{0}, f(n) \leq c g(n)$, where $c \neq 0$
For some $c \neq 0$, for some $n_{0} \geq 0$, for all $n \geq n_{0}, f(n) \leq c g(n)$
Definition (Big-Oh)
We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B_{n_{0}}$ whey. y

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$.

Big-Oh Proofs

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$.
We want to prove $4+3 n \in \mathcal{O}(n)$. That is, we want to prove:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot 4+3 n \leq \underset{\sim}{\ell} c n
$$

Proof Strategy

Definition (Big-Oh)
We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$.
We want to prove $4+3 n+4 n^{2} \in \mathcal{O}\left(n^{3}\right)$.

$$
\text { wIS: } 4+3 n+4 n^{2} \leq C n^{3}
$$

