Analyzing hasDuplicate

Asymptotics

We'd like to be able to compare two functions. Intuitively, we want an operation like " \leq " (e.g. $4 \leq 5$), but for functions.

If we have f and 4f, we should consider them the same:

 $f \leq g$ when...

h>no >> f(nK (J(n)

Asymptotics

We'd like to be able to compare two functions. Intuitively, we want an operation like " \leq " (e.g. $4 \leq 5$), but for functions.

If we have f and 4f, we should consider them the same:

 $f \leq g$ when...

 $f \leq cg$ where c is a constant and $c \neq 0$.

We also care about all values of the function that are big enough:

 $f \leq g$ when...

For all *n* "large enough", $f(n) \le cg(n)$, where $c \ne 0$ For some $n_0 \ge 0$, for all $n \ge n_0$, $f(n) \le cg(n)$, where $c \ne 0$ For some $c \ne 0$, for some $n_0 \ge 0$, for all $n \ge n_0$, $f(n) \le cg(n)$

Definition (Big-Oh)

We say a function $f: A \to B$ is dominated by a function $g: A \to B$ when

$$\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \le cg(n)$$

Formally, we write this as $f \in \mathcal{O}(g)$.

Big-Oh Proofs

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

$$\exists (c, n_0 > 0). \ \forall (n \ge n_0). \ f(n) \le cg(n)$$

Formally, we write this as $f \in \mathcal{O}(g)$.

We want to prove $4 + 3n \in \mathcal{O}(n)$. That is, we want to prove:

$$\exists (c, n_0 > 0). \ \forall (n \ge n_0). \ 4 + 3n \le kn$$

Proof Strategy

Sw
$$34 + 3n \leq (n)$$

 $(4 + 3n \leq 4n + 3n \geq (n)$
 $24 \leq Cy$

Big-Oh Proofs 2

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

 $\exists (c, n_0 > 0). \forall (n \ge n_0). f(n) \le cg(n)$

Formally, we write this as $f \in \mathcal{O}(g)$.

We want to prove $4 + 3n + 4n^2 \in \mathcal{O}(n^3)$.

$$\frac{1}{n_{0} = 1} \left[\frac{1}{1} \right] + \frac{3n}{1} + 4n^{2} \leq \frac{1}{14n^{3} + 3n^{3} + 4n^{3}} \leq \frac{1}{14n^{3} + 3n^{3} + 3n^{3}} \leq \frac{1}{14n^{3} + 3n^{3}} \leq \frac{1}{14n^$$