CSE 332: Data Structures and Parallelism

Section 3: BSTs, Recurrences, and Amortized Analysis

0. Interview Question: Binary Search Trees

Write pseudo-code to perform an in-order traversal in a binary search tree without using recursion.

1. Big-Oh Bounds for Recurrences

For each of the following, find a Big-Oh bound for the provided recurrence.
(a) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 8 T(n / 2)+4 n^{2} & \text { otherwise }\end{cases}$
(b) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 7 T(n / 2)+18 n^{2} & \text { otherwise }\end{cases}$
(c) $T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n / 2)+3 & \text { otherwise }\end{cases}$

2. Recurrences and Closed Forms

For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.
Consider the function g :

```
g(n) {
    if (n <= 1) {
        return 1000;
    }
    if (g(n/3) > 5) {
        for (int i = 0; i < n; i++) {
            System.out.println("Yay!");
        }
        return 5 * g(n/3);
    }
    else {
        for (int i = 0; i < n * n; i++) {
            System.out.println("Yay!");
        }
        return 4 * g(n/3);
    }
    } Find a recurrence for g(n).
```

- Find a closed form for $g(n)$.

3. MULTI-pop

Consider augmenting the Stack ADT with an extra operation:
multipop(k): Pops up to k elements from the Stack and returns the number of elements it popped What is the amortized cost of a series of multipop's on a Stack assuming push and pop are both $\mathcal{O}(1)$?

4. MinVL Trees

Draw an AVL tree of height 4 that contains the minimum possible number of nodes.

5. AVL Trees

Insert 6, 5, 4, 3, 2, 1, 10, 9, 8, 7 into an initially empty AVL Tree.

6. AVL Trees

Given a binary search tree, describe how you could convert it into an AVL tree with worst-case time $\mathcal{O}(n \lg (n))$. What is the best case runtime of your algorithm?

7. HeapVL Trees

Is there an AVL Tree that isn't a heap? Is there a heap that isn't an AVL tree? Is there a binary search tree that is neither? Is there a binary search tree that is both?

8. B-Trees

(a) Insert the following into an empty B-Tree with $M=3$ and $L=3: 12,24,36,17,18,5,22,20$.
(b) Delete $17,12,22,5,36$
(c) Given the following parameters for a B-Tree with $M=11$ and $L=8$

- Key Size $=10$ bytes
- Pointer Size $=2$ bytes
- Data Size $=16$ bytes per record (includes the key)

Assuming that M and L were chosen appropriately, what is the likely page size on the machine where this implementation will be deployed? Give a numeric answer and a short justification based on two equations using the parameter values above.

