## CSE 332: Data Structures and Parallelism

## Recurrences Solutions

## Happening Happening Happening

Consider the following code:

```
f(n) {
    if (n == 0) {
        return 0;
    }
    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
            result += j;
        }
    }
    return f(n/2) + result + f(n/2);
}
```

(a) Find a recurrence for the time complexity of $f(n)$.

## Solution:

We look at the three separate cases (base case, non-recursive work, recursive work):

- The base case is constant time, because we only do a return statement
- The non-recursive work is constant time for the assignments and if tests and $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c=\sum_{i=0}^{n-1} c * i=$ $\frac{c * n(n-1)}{2}=\frac{c n^{2}}{2}-\frac{c n}{2}$ for the for loops.
- The recursive work is $2 T(n / 2)$.

Putting these together, we get:

$$
T(n)= \begin{cases}c_{0} & \text { if } n=1 \\ 2 T(n / 2)+c_{1} * n^{2}+c_{2} n+c_{3} & \text { otherwise }\end{cases}
$$

(b) Find a Big-Oh bound for your recurrence.

## Solution:

Note that $c_{1} n^{2}+c_{2} n+c_{3} \in \mathcal{O}\left(n^{2}\right)$. Since we're only looking for a big- $\mathcal{O}$ bound, we dismiss the constants and lower-order terms in the non-recursive runtime for our analysis. The recursion tree has $\lg (n)$ height, each node of the tree does $\left(\frac{n}{2^{i}}\right)^{2}$ work, and each level has $2^{i}$ nodes.
Note that the total work is then $n^{2} \sum_{i=0}^{\lg (n)} 2^{i}\left(\frac{1}{2^{i}}\right)^{2}=n^{2} \sum_{i=0}^{\lg (n)}\left(\frac{2^{i}}{4^{i}}\right)<n^{2} \sum_{i=0}^{\infty}\left(\frac{1}{2^{i}}\right)=\frac{n^{2}}{1-\frac{1}{2}} \in \mathcal{O}\left(n^{2}\right)$.
So, $T(n) \in \mathcal{O}\left(n^{2}\right)$.

