
CSE 332: Data Structures and Parallelism

Section 2: Heaps, Asymptotics, & Recurrences

0. Heaps
Insert 10, 7, 15, 17, 12, 20, 6, 32 into a min heap.
Now, insert the same values into a max heap.
Now, insert the same values into a min heap, but use Floyd’s buildHeap algorithm.

1



1. Big-Oh Proofs
For each of the following, prove that f ∈ O(g).

(a) f(n) = 7n g(n) =
n

10

(b) f(n) = 1000 g(n) = 3n3

(c) f(n) = 7n2 + 3n g(n) = n4

(d) f(n) = n+ 2n lg n g(n) = n lg n

2



2. Is Your Program Running? Better Catch It!
For each of the following, determine the asymptotic worst-case runtime in terms of n.

(a)
1 int x = 0;
2 for (int i = n; i >= 0; i−−) {
3 if ((i % 3) == 0) {
4 break;
5 }
6 else {
7 x += n;
8 }
9 }

(b)
1 int x = 0;
2 for (int i = 0; i < n; i++) {
3 for (int j = 0; j < (n * n / 3); j++) {
4 x += j;
5 }
6 }

(c)
1 int x = 0;
2 for (int i = 0; i <= n; i++) {
3 for (int j = 0; j < (i * i); j++) {
4 x += j;
5 }
6 }

3. Induction Shminduction
Prove

n∑
i=0

2i = 2n+1 − 1 by induction on n.

3



4. The Implications of Asymptotics
For each of the following, determine if the statement is true or false.

(a) f(n) ∈ Θ((g(n)) → f(n) ∈ O(g(n))

(b) f(n) ∈ Θ(g(n)) → g(n) ∈ Θ(f(n))

(c) f(n) ∈ Ω(g(n)) → g(n) ∈ O(f(n))

5. Asymptotic Analysis
For each of the following, determine if f ∈ O(g), f ∈ Ω(g), f ∈ Θ(g), several of these, or none of these.

(a) f(n) = log n g(n) = log log n

(b) f(n) = 2n g(n) = 3n

(c) f(n) = 22n g(n) = 2n

4



6. Recurrences and Closed Forms
For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a
closed form for the recurrence.

Consider the function f :

1 f(n) {
2 if (n == 0) {
3 return 1;
4 }
5 return 2 * f(n − 1) + 1;
6 }

• Find a recurrence for f(n).

• Find a closed form for f(n).

7. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

(a) T (n) =

{
1 if n = 0

T (n− 1) + 3 otherwise

(b) T (n) =

{
1 if n = 0

T (n− 1) + T (n− 2) + 3 otherwise

5



8. Hello, elloH, lleoH, etc.
Consider the following code:

1 p(L) {
2 if (L == null) {
3 return [[]];
4 }
5 List ret = [];
6
7 int first = L.data;
8 Node rest = L.next;
9

10 for (List part : p(rest)) {
11 for (int i = 0; i <= part.size()) {
12 part = copy(part);
13 part.add(i, first);
14 ret.add(part);
15 }
16 }
17 return ret;
18 }

(a) Find a recurrence for the output complexity of p(L). Then, find a Big-Oh bound for your recurrence.

(b) Now, find a recurrence for the time complexity of p(L),

6


