CSE 332: Data Abstractions

Section 2: Heaps, Asymptotics, \& Recurrences Solutions

0. Heaps

Insert 10, 7, 15, 17, 12, 20, 6, 32 into a min heap.
Now, insert the same values into a max heap.
Now, insert the same values into a min heap, but use Floyd's buildHeap algorithm. Solution:

1. Big-Oh Proofs

For each of the following, prove that $f \in \mathcal{O}(g)$.
(a)

$$
f(n)=7 n
$$

$$
g(n)=\frac{n}{10}
$$

Solution: Choose $c=70, n_{0}=1$. Then, note that $7 n=\frac{70 n}{10} \leq 70\left(\frac{n}{10}\right)$ for all $n \geq 1$. So, $f(n) \in \mathcal{O}(g(n))$.
(b)

$$
f(n)=1000
$$

$$
g(n)=3 n^{3}
$$

Solution: Choose $c=3, n_{0}=1000$. Then, note that $1000 \leq n \leq n^{3} \leq 3 n^{3}$ for all $n \geq 1000$. So, $f(n) \in \mathcal{O}(g(n))$.
(c)

$$
f(n)=7 n^{2}+3 n \quad g(n)=n^{4}
$$

Solution: Choose $c=14, n_{0}=1$. Then, note that $7 n^{2}+3 n \leq 7\left(n^{4}+n^{4}\right) \leq 14 n^{4}$ for all $n \geq 1$. So, $f(n) \in \mathcal{O}(g(n))$.
(d)

$$
f(n)=n+2 n \lg n
$$

$$
g(n)=n \lg n
$$

Solution: Choose $c=3, n_{0}=1$. Then, note that $n+2 n \lg n \leq n \lg n+2 n \lg n=3 n \lg n$ for all $n \geq 1$. So, $f(n) \in \mathcal{O}(g(n))$.

2. Is Your Program Running? Better Catch It!

For each of the following, determine the asymptotic worst-case runtime in terms of n.
(a)

```
int x = 0;
for (int i = n; i >= 0; i--) {
    if ((i % 3) == 0) {
        break;
    }
    else {
        x += n;
    }
}
```

Solution: This is $\Theta(1)$, because $n, n-1$, or $n-2$ will be divisible by three. So, the loop runs at most 3 times.
(b)

```
int x = 0;
for (int i = 0; i < n; i++) {
    for (int j = 0; j < (n * n / 3); j++) {
        x += j;
    }
}
```

Solution:

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{n^{2} / 3-1} 1=\sum_{i=0}^{n} \frac{n^{2}}{3}=n\left(\frac{n^{2}}{3}\right)=\Theta\left(n^{3}\right)
$$

(c)

```
int x = 0;
for (int i = 0; i <= n; i++) {
    for (int j = 0; j < (i * i); j++) {
        x += j;
    }
}
```

Solution:
$\sum_{i=0}^{n} \sum_{j=0}^{i^{2}-1} 1=\sum_{i=0}^{n} i^{2}=\left(\frac{n(n+1)(2 n+1)}{6}\right)=\Theta\left(n^{3}\right)$

3. Induction Shminduction

Prove $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ by induction on n.

Solution:

Let $P(n)$ be the statement " $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ " for all $n \in \mathbb{N}$. We prove $P(n)$ by induction on n.
Base Case. Note that $\sum_{i=0}^{0} 2^{i}=0=2^{0}-1$. So, $P(0)$ is true.
Induction Hypothesis. Suppose $P(k)$ is true for some $k \in \mathbb{N}$.
Induction Step. Note that

$$
\begin{align*}
\sum_{i=0}^{k+1} 2^{i} & =\sum_{i=0}^{k} 2^{i}+2^{k+1} \\
& =2^{k+1}-1+2^{k+1} \tag{ByIH}\\
& =2^{k+2}-1
\end{align*}
$$

Note that this is exactly $P(k+1)$.
So, the claim is true by induction on n.

4. The Implications of Asymptotics

For each of the following, determine if the statement is true or false.
(a) $f(n) \in \Theta((g(n)) \rightarrow f(n) \in \mathcal{O}(g(n))$

Solution:

This is true. By definition of $f(n) \in \Theta((g(n))$, we have $f(n) \in \mathcal{O}(g(n))$.
(b) $f(n) \in \Theta(g(n)) \rightarrow g(n) \in \Theta(f(n))$

Solution:

This is true. By definition of $f(n) \in \Theta(g(n))$, we have $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$. So, there exist $n_{0}, n_{1}, c_{0}, c_{1}>0$ such that $f(n) \leq c_{0} g(n)$ for all $n \geq n_{0}$ and $f(n) \geq c_{1} g(n)$ for all $n \geq n_{1}$. Define $n_{2}=\max \left(n_{0}, n_{1}\right.$ and note that both inequalities hold for all $n \geq n_{2}$. Then, dividing both sides by their constants, we have:

$$
\begin{aligned}
& g(n) \geq \frac{f(n)}{c_{0}} \\
& g(n) \leq \frac{f(n)}{c_{1}}
\end{aligned}
$$

So, we've found constants $\left(\frac{1}{c_{0}}, \frac{1}{c_{1}}\right)$ and a minimum $n\left(n_{2}\right)$ that satisfy the definitions of Omega and Oh. It follows that $g(n)$ is $\Theta(f(n))$.
(c) $f(n) \in \Omega((g(n) \rightarrow g(n) \in \mathcal{O}(f(n))$

Solution:

This is true. This is basically identical to the previous part (except we only have to do half the work).

5. Asymptotic Analysis

For each of the following, determine if $f \in \mathcal{O}(g), f \in \Omega(g), f \in \Theta(g)$, several of these, or none of these.
(a)
$f(n)=\log n$
$g(n)=\log \log n$
Solution: $f(n) \in \Omega(g(n))$
(b)

$$
f(n)=2^{n}
$$

$$
g(n)=3^{n}
$$

Solution: $f(n) \in \mathcal{O}(g(n))$
(c)

$$
f(n)=2^{2 n}
$$

$$
g(n)=2^{n}
$$

Solution: $f(n) \in \Omega(g(n))$

6. Recurrences and Closed Forms

For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.

Consider the function f :
$f(n)$ \{
if ($\mathrm{n}==0$) \{
return 1;
\}
return $2 * f(n-1)+1$;
\}

- Find a recurrence for $f(n)$.

Solution:

$$
T(n)= \begin{cases}c_{0} & \text { if } n=0 \\ T(n-1)+c_{1} & \text { otherwise }\end{cases}
$$

- Find a closed form for $f(n)$.

Solution:

Unrolling the recurrence, we get $T(n)=\underbrace{c_{1}+c_{1}+\cdots+c_{1}}_{n \text { times }}+c_{0}=c_{1} n+c_{0}$.

7. Big-Oh Bounds for Recurrences

For each of the following, find a Big-Oh bound for the provided recurrence.
(a) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+3 & \text { otherwise }\end{cases}$

Solution:

There are n terms to unroll and each one is constant. This is $\Theta(n)$.
(b) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+T(n-2)+3 & \text { otherwise }\end{cases}$

Solution:

Note that this recurrence is bounded above by $T(n)=2 T(n-1)+3$. If we unroll that recurrence, we get $3+2(3+2(3+\cdots+2(1)))$. This is approximately $\sum_{i=0}^{n} 3 \times 2^{i}=3\left(2^{n+1}-1\right)=\mathcal{O}\left(2^{n}\right)$. We can actually find a better bound (e.g., it's not the case that $T(n) \in \Omega\left(2^{n}\right)$).

