CSE 332

JUNE 21 - WORKLISTS AND PRIORITY
QUEUES

ASSORTED MINUTIAE

 Midterm exam:
* July 14; 9:40-10:40
e Canvas

« Siteis up — EXO1 is out
* Project 1 out after class

ASSORTED MINUTIAE

 Piazza

ASSORTED MINUTIAE

 Piazza

* Important course information and
guestions posted, link on the website

ASSORTED MINUTIAE

 Piazza

* Important course information and
guestions posted, link on the website

* All comments and questions will be put
through there, so please register as soon

as possible

TODAY’S SCHEDULE

* Testing
 Worklist ADT

 Priority Queues

TESTING

* Implementation is great if it works on the
first try

TESTING

* Implementation is great if it works on the
first try

* In a large implementation, what is
causing the problem?

« Data structure?
* Client?
« Wrapper?

TESTING

* Implementation is great if it works on the
first try

* In a large implementation, what is
causing the problem?

* Object oriented programming allows
modularity — good testing can pinpoint
bugs to particular modules

TESTING

 Two primary types of testing

TESTING

 Two primary types of testing

- Black box
» Behavior only, no peeking into the code

TESTING

 Two primary types of testing

- Black box
» Behavior only, no peeking into the code

« White box (or clear box)

* Where there is an understanding of the
implementation that can be leveraged
for testing

TESTING

 Part 1 on the homework will involve
writing tests for your own
implementation. (White box)

« Part 2 will involve testing java .class files.

* Only the interface (TestQueue) and
expected behavior are known

TESTING

* |solate the problem

TESTING

* |solate the problem

« Write specific tests

* Running the whole program doesn’t help
narrow down problems

TESTING

* |solate the problem

« Write specific tests

* Running the whole program doesn’t help
narrow down problems

 What are expected test cases?

TESTING

* |solate the problem

« Write specific tests

* Running the whole program doesn’t help
narrow down problems

 What are expected test cases?

* In general: [0,1,n] are good starting points

* White box testing can take advantage of
boundary cases (e.g. the resize of an
array)

TESTING

 Many test cases (and large ones)

* You can prove that an algorithm is
correct, but you cannot necessarily prove
an arbitrary implementation is correct

TESTING

 Many test cases (and large ones)

* You can prove that an algorithm is
correct, but you cannot necessarily prove
an arbitrary implementation is correct

 More inputs can increase certainty

» Adversarial testing
* The client is not your friend

TESTING

* This will come up a lot in the quarter
« HW1 Part 2 : .txt files

WORK LIST

 Broad ADT

WORK LIST

 Broad ADT
« Comes up a lot in Project 1

WORK LIST

 Broad ADT

« Comes up a lot in Project 1
 Review — ADT is all about behavior

WORK LIST

 Broad ADT

« Comes up a lot in Project 1
 Review — ADT is all about behavior

* Functionality:

WORK LIST

 Broad ADT

« Comes up a lot in Project 1
 Review — ADT is all about behavior

* Functionality:
« Add(work)

WORK LIST

 Broad ADT

« Comes up a lot in Project 1
 Review — ADT is all about behavior

* Functionality:
« Add(work)

* peek()

WORK LIST

 Broad ADT

« Comes up a lot in Project 1
 Review — ADT is all about behavior

* Functionality:
» Add(work)
* peek()
* next()

WORK LIST

 Broad ADT

« Comes up a lot in Project 1
 Review — ADT is all about behavior

* Functionality:
» Add(work)
* peek()
* next()
» hasWork()

WORK LIST

 Adds some information into a storage
schema

WORK LIST

 Adds some information into a storage
schema

* Provides some ordering for that data to
be processed

WORK LIST

« How do we implement this ADT with what
we currently know?

WORK LIST

« How do we implement this ADT with what
we currently know?

 Take a few minutes and think of some
implementations that work off of things you've
learned from 142/143

WORK LIST

« How do we implement this ADT with what
we currently know?

 Take a few minutes and think of some
implementations that work off of things you've
learned from 142/143

» Consider design tradeoffs that we discussed a bit
last week.

WORK LIST

 What is the big part of design here?

WORK LIST

 What is the big part of design here?

- What do we consider to be next()?

WORK LIST

 What is the big part of design here?

- What do we consider to be next()?
- Stack: LIFO

WORK LIST

 What is the big part of design here?

- What do we consider to be next()?

« Stack: LIFO
* Queue: FIFO

WORK LIST

 What is the big part of design here?

- What do we consider to be next()?

- Stack: LIFO
* Queue: FIFO
* Other?: Random possibly?

WORK LIST
 What is the big part of design here?

» What do we consider to be next()?
« Stack: LIFO
* Queue: FIFO
* Other?: Random possibly?
« The ADT doesn’t specify

WORK LIST
 What is the big part of design here?

» What do we consider to be next()?
« Stack: LIFO
* Queue: FIFO
* Other?: Random possibly?
« The ADT doesn’t specify

 What if we wanted the client to be able to
specify the work order?

PRIORITY QUEUE

* New ADT

PRIORITY QUEUE

* New ADT
* Objects in the priority queue have:

- Data
* Priority

PRIORITY QUEUE

* New ADT
* Objects in the priority queue have:

- Data
* Priority
« Conditions
 Lower priority items should dequeue first

* |tems with the same priority should be
first-in first-out
» Change priority?

PRIORITY QUEUE

* Applications?

PRIORITY QUEUE

* Applications?
* Hospitals
« CSE course overloads
* Etc...

PRIORITY QUEUE

 How to implement?

PRIORITY QUEUE

 How to implement?

* Array?

PRIORITY QUEUE

 How to implement?
* Array?

* Must keep sorted

* Inserting into the middle is costly
(must move other items)

PRIORITY QUEUE

 How to implement?

- Keep data sorted (somehow)
* Array?

* Inserting into the middle is costly
(must move other items)

 Linked list?

* Must iterate through entire list to find place
« Cannot move backward if priority changes

PRIORITY QUEUE

 These implementations will all give us the
behavior we want as far as the ADT, but
they may be poor design decisions

* Any other data structures to try?

PRIORITY QUEUE

* Priority queue implementations?

PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?

PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?
 Faster insert

PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?
 Faster insert

* Find? Always deleting the smallest (left-
most) element

PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?
 Faster insert

* Find? Always deleting the smallest (left-
most) element

* Maintaining FIFO?

PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?
 Faster insert

* Find? Always deleting the smallest (left-
most) element

* Maintaining FIFO?
« Changing priority?

PRIORITY QUEUE

 Want the speed of trees (but not BST)
 Priority Queue has unique demands

PRIORITY QUEUE

 Want the speed of trees (but not BST)
 Priority Queue has unique demands
« Other types of trees?

PRIORITY QUEUE

Want the speed of trees (but not BST)
Priority Queue has unique demands

Other types of trees?
Review BST first

PROPERTIES (BST)

e Tree

PROPERTIES (BST)

* Tree (Binary)

* Root
* (Two) Children

* No cycles

PROPERTIES (BST)

* Tree (Binary)
* Root
* (Two) Children

* No cycles
« Search

PROPERTIES (BST)

* Tree (Binary)
* Root
* (Two) Children

* No cycles
« Search

 Comparable data
 Left child data < parent data

PROPERTIES (BST)

* Tree (Binary)
* Root
* (Two) Children

* No cycles
« Search

 Comparable data
 Left child data < parent data
- Smallest child is at the left most node

PROPERTIES (BST)

* Binary tree may be useful
« Search property doesn’t help

PROPERTIES (BST)

* Binary tree may be useful
« Search property doesn’t help
* Always deleting min

PROPERTIES (BST)

* Binary tree may be useful
« Search property doesn’t help

* Always deleting min
* Put min on top!

HEAP-ORDER PROPERTY

« Still a binary tree

HEAP-ORDER PROPERTY

« Still a binary tree
* Instead of search (left < parent),

HEAP-ORDER PROPERTY

« Still a binary tree

 Instead of search (left < parent),
parent should be less than children

HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST

HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST

HEAP EXAMPLE

* Only looking at priorities
* Insert something priority 4

HEAP EXAMPLE

(&

HEAP EXAMPLE

(&

* Now insert priority 67

HEAP EXAMPLE

(&

* Now insert priority 6?

 Should come after 4, but no preference
right over left?

HEAP EXAMPLE

(&

* Now insert priority 6?

 Should come after 4, but no preference
right over left?

« Solution: fill the tree from top to bottom
left to right.

HEAP EXAMPLE

Now insert 2.

HEAP EXAMPLE

Now insert 2.

HEAP EXAMPLE

Could easily have been 4 on the left, but
our left to right top to bottom strategy
determines this solution

COMPLETENESS

)
s

16 17 18 19 20 21 22 23 24 25

COMPLETENESS

2
e

16 17 18 19 20 21 22 23 24 25

Filling left to right and top to bottom is
another property - completeness

HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

 How does this help?

HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

 How does this help?
* Array implementation

HEAPS

* Insert into array from left to right

 For any parent at index I,
children at 2*i+1 and 2%i+2

HEAPS

« How to maintain heap property then?

HEAPS

« How to maintain heap property then?

- Parent must be higher priority than
children

HEAPS

« How to maintain heap property then?
- Parent must be higher priority than
children

 Two functions — percolate up and
percolate down

HEAPS

 Does the heap work for the Priority
Queue problem?

HEAPS

 Does the heap work for the Priority
Queue problem?

* FIFO preservation?

HEAPS

 Does the heap work for the Priority
Queue problem?

* FIFO preservation?

No. Only comparisons are priority.

