
CSE 332
JUNE 21 – WORKLISTS AND PRIORITY
QUEUES

ASSORTED MINUTIAE
•  Midterm exam:

•  July 14; 9:40-10:40
•  Canvas

•  Site is up – EX01 is out
•  Project 1 out after class

ASSORTED MINUTIAE
•  Piazza

ASSORTED MINUTIAE
•  Piazza

•  Important course information and
questions posted, link on the website

ASSORTED MINUTIAE
•  Piazza

•  Important course information and
questions posted, link on the website

•  All comments and questions will be put
through there, so please register as soon
as possible

TODAY’S SCHEDULE
•  Testing
•  Worklist ADT
•  Priority Queues

TESTING
•  Implementation is great if it works on the

first try

TESTING
•  Implementation is great if it works on the

first try
•  In a large implementation, what is

causing the problem?
•  Data structure?
•  Client?
•  Wrapper?

TESTING
•  Implementation is great if it works on the

first try
•  In a large implementation, what is

causing the problem?
•  Object oriented programming allows

modularity – good testing can pinpoint
bugs to particular modules

TESTING
•  Two primary types of testing

TESTING
•  Two primary types of testing

•  Black box
•  Behavior only, no peeking into the code

TESTING
•  Two primary types of testing

•  Black box
•  Behavior only, no peeking into the code

•  White box (or clear box)
•  Where there is an understanding of the

implementation that can be leveraged
for testing

TESTING
•  Part 1 on the homework will involve

writing tests for your own
implementation. (White box)

•  Part 2 will involve testing java .class files.

•  Only the interface (TestQueue) and
expected behavior are known

TESTING
•  Isolate the problem

TESTING
•  Isolate the problem

•  Write specific tests
•  Running the whole program doesn’t help

narrow down problems

TESTING
•  Isolate the problem

•  Write specific tests
•  Running the whole program doesn’t help

narrow down problems
•  What are expected test cases?

TESTING
•  Isolate the problem

•  Write specific tests
•  Running the whole program doesn’t help

narrow down problems
•  What are expected test cases?

•  In general: [0,1,n] are good starting points
•  White box testing can take advantage of

boundary cases (e.g. the resize of an
array)

TESTING
•  Many test cases (and large ones)

•  You can prove that an algorithm is
correct, but you cannot necessarily prove
an arbitrary implementation is correct

TESTING
•  Many test cases (and large ones)

•  You can prove that an algorithm is
correct, but you cannot necessarily prove
an arbitrary implementation is correct

•  More inputs can increase certainty
•  Adversarial testing
•  The client is not your friend

TESTING
•  This will come up a lot in the quarter
•  HW1 Part 2 : .txt files

WORK LIST
•  Broad ADT

WORK LIST
•  Broad ADT

•  Comes up a lot in Project 1

WORK LIST
•  Broad ADT

•  Comes up a lot in Project 1
•  Review – ADT is all about behavior

WORK LIST
•  Broad ADT

•  Comes up a lot in Project 1
•  Review – ADT is all about behavior

•  Functionality:

WORK LIST
•  Broad ADT

•  Comes up a lot in Project 1
•  Review – ADT is all about behavior

•  Functionality:
•  Add(work)

WORK LIST
•  Broad ADT

•  Comes up a lot in Project 1
•  Review – ADT is all about behavior

•  Functionality:
•  Add(work)
•  peek()

WORK LIST
•  Broad ADT

•  Comes up a lot in Project 1
•  Review – ADT is all about behavior

•  Functionality:
•  Add(work)
•  peek()
•  next()

WORK LIST
•  Broad ADT

•  Comes up a lot in Project 1
•  Review – ADT is all about behavior

•  Functionality:
•  Add(work)
•  peek()
•  next()
•  hasWork()

WORK LIST
•  Adds some information into a storage

schema

WORK LIST
•  Adds some information into a storage

schema
•  Provides some ordering for that data to

be processed

WORK LIST
•  How do we implement this ADT with what

we currently know?

WORK LIST
•  How do we implement this ADT with what

we currently know?
•  Take a few minutes and think of some

implementations that work off of things you’ve
learned from 142/143

WORK LIST
•  How do we implement this ADT with what

we currently know?
•  Take a few minutes and think of some

implementations that work off of things you’ve
learned from 142/143

•  Consider design tradeoffs that we discussed a bit
last week.

WORK LIST
•  What is the big part of design here?

WORK LIST
•  What is the big part of design here?

•  What do we consider to be next()?

WORK LIST
•  What is the big part of design here?

•  What do we consider to be next()?
•  Stack: LIFO

WORK LIST
•  What is the big part of design here?

•  What do we consider to be next()?
•  Stack: LIFO
•  Queue: FIFO

WORK LIST
•  What is the big part of design here?

•  What do we consider to be next()?
•  Stack: LIFO
•  Queue: FIFO
•  Other?: Random possibly?

WORK LIST
•  What is the big part of design here?

•  What do we consider to be next()?
•  Stack: LIFO
•  Queue: FIFO
•  Other?: Random possibly?
•  The ADT doesn’t specify

WORK LIST
•  What is the big part of design here?

•  What do we consider to be next()?
•  Stack: LIFO
•  Queue: FIFO
•  Other?: Random possibly?
•  The ADT doesn’t specify
•  What if we wanted the client to be able to

specify the work order?

PRIORITY QUEUE
•  New ADT

PRIORITY QUEUE
•  New ADT
•  Objects in the priority queue have:

•  Data
•  Priority

PRIORITY QUEUE
•  New ADT
•  Objects in the priority queue have:

•  Data
•  Priority

•  Conditions
•  Lower priority items should dequeue first
•  Items with the same priority should be

first-in first-out
•  Change priority?

PRIORITY QUEUE
•  Applications?

PRIORITY QUEUE
•  Applications?

•  Hospitals
•  CSE course overloads
•  Etc…

PRIORITY QUEUE
•  How to implement?

PRIORITY QUEUE
•  How to implement?
•  Array?

PRIORITY QUEUE
•  How to implement?
•  Array?

•  Must keep sorted
•  Inserting into the middle is costly

 (must move other items)

PRIORITY QUEUE
•  How to implement?

•  Keep data sorted (somehow)
•  Array?

•  Inserting into the middle is costly
 (must move other items)

•  Linked list?
•  Must iterate through entire list to find place
•  Cannot move backward if priority changes

PRIORITY QUEUE
•  These implementations will all give us the

behavior we want as far as the ADT, but
they may be poor design decisions

•  Any other data structures to try?

PRIORITY QUEUE
•  Priority queue implementations?

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?
•  Faster insert

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?
•  Faster insert
•  Find? Always deleting the smallest (left-

most) element

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?
•  Faster insert
•  Find? Always deleting the smallest (left-

most) element
•  Maintaining FIFO?

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?
•  Faster insert
•  Find? Always deleting the smallest (left-

most) element
•  Maintaining FIFO?
•  Changing priority?

PRIORITY QUEUE
•  Want the speed of trees (but not BST)
•  Priority Queue has unique demands

PRIORITY QUEUE
•  Want the speed of trees (but not BST)
•  Priority Queue has unique demands
•  Other types of trees?

PRIORITY QUEUE
•  Want the speed of trees (but not BST)
•  Priority Queue has unique demands
•  Other types of trees?
•  Review BST first

PROPERTIES (BST)
•  Tree

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

•  Search

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

•  Search
•  Comparable data
•  Left child data < parent data

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

•  Search
•  Comparable data
•  Left child data < parent data
•  Smallest child is at the left most node

PROPERTIES (BST)
•  Binary tree may be useful
•  Search property doesn’t help

PROPERTIES (BST)
•  Binary tree may be useful
•  Search property doesn’t help

•  Always deleting min

PROPERTIES (BST)
•  Binary tree may be useful
•  Search property doesn’t help

•  Always deleting min
•  Put min on top!

HEAP-ORDER PROPERTY
•  Still a binary tree

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children
•  How to implement?
•  Insert and delete are different than BST

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children
•  How to implement?
•  Insert and delete are different than BST

HEAP EXAMPLE
•  Only looking at priorities
•  Insert something priority 4

HEAP EXAMPLE

4

HEAP EXAMPLE

4

•  Now insert priority 6?

HEAP EXAMPLE

4

•  Now insert priority 6?
•  Should come after 4, but no preference

right over left?

HEAP EXAMPLE

4

•  Now insert priority 6?
•  Should come after 4, but no preference

right over left?
•  Solution: fill the tree from top to bottom

left to right.

HEAP EXAMPLE

4

6 null

Now insert 2.

HEAP EXAMPLE

2

6 4

Now insert 2.

HEAP EXAMPLE

2

6 4

Could easily have been 4 on the left, but
our left to right top to bottom strategy
determines this solution

COMPLETENESS

COMPLETENESS

Filling left to right and top to bottom is
another property - completeness

HEAPS
•  Heap property (parents < children)
•  Complete tree property (left to right,

bottom to top)
•  How does this help?

HEAPS
•  Heap property (parents < children)
•  Complete tree property (left to right,

bottom to top)
•  How does this help?

•  Array implementation

HEAPS

0 1 2 3 4

•  Insert into array from left to right
•  For any parent at index i,

 children at 2*i+1 and 2*i+2

HEAPS
•  How to maintain heap property then?

HEAPS
•  How to maintain heap property then?

•  Parent must be higher priority than
children

HEAPS
•  How to maintain heap property then?

•  Parent must be higher priority than
children

•  Two functions – percolate up and
percolate down

HEAPS
•  Does the heap work for the Priority

Queue problem?

HEAPS
•  Does the heap work for the Priority

Queue problem?
•  FIFO preservation?

HEAPS
•  Does the heap work for the Priority

Queue problem?
•  FIFO preservation?

No. Only comparisons are priority.

