CSE 332

JUNE 21 - WORKLISTS AND PRIORITY
QUEUES




ASSORTED MINUTIAE

 Midterm exam:
* July 14; 9:40-10:40
e Canvas

« Siteis up — EXO1 is out
* Project 1 out after class
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ASSORTED MINUTIAE

 Piazza

* Important course information and
guestions posted, link on the website

* All comments and questions will be put
through there, so please register as soon

as possible




TODAY’S SCHEDULE

* Testing
 Worklist ADT

 Priority Queues
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TESTING

* Implementation is great if it works on the
first try

* In a large implementation, what is
causing the problem?

* Object oriented programming allows
modularity — good testing can pinpoint
bugs to particular modules
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TESTING

 Two primary types of testing

- Black box
» Behavior only, no peeking into the code

« White box (or clear box)

* Where there is an understanding of the
implementation that can be leveraged
for testing




TESTING

 Part 1 on the homework will involve
writing tests for your own
implementation. (White box)

« Part 2 will involve testing java .class files.

* Only the interface (TestQueue) and
expected behavior are known
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TESTING

* |solate the problem

« Write specific tests

* Running the whole program doesn’t help
narrow down problems

 What are expected test cases?

* In general: [0,1,n] are good starting points

* White box testing can take advantage of
boundary cases (e.g. the resize of an
array)
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 Many test cases (and large ones)

* You can prove that an algorithm is
correct, but you cannot necessarily prove
an arbitrary implementation is correct




TESTING

 Many test cases (and large ones)

* You can prove that an algorithm is
correct, but you cannot necessarily prove
an arbitrary implementation is correct

 More inputs can increase certainty

» Adversarial testing
* The client is not your friend




TESTING

* This will come up a lot in the quarter
« HW1 Part 2 : .txt files
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WORK LIST

 Broad ADT

« Comes up a lot in Project 1
 Review — ADT is all about behavior

* Functionality:
» Add(work)
* peek()
* next()
» hasWork()
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 Adds some information into a storage
schema




WORK LIST

 Adds some information into a storage
schema

* Provides some ordering for that data to
be processed
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we currently know?
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WORK LIST

« How do we implement this ADT with what
we currently know?

 Take a few minutes and think of some
implementations that work off of things you've
learned from 142/143

» Consider design tradeoffs that we discussed a bit
last week.
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WORK LIST
 What is the big part of design here?

» What do we consider to be next()?
« Stack: LIFO
* Queue: FIFO
* Other?: Random possibly?
« The ADT doesn’t specify

 What if we wanted the client to be able to
specify the work order?
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PRIORITY QUEUE

* New ADT
* Objects in the priority queue have:

- Data
* Priority
« Conditions
 Lower priority items should dequeue first

* |tems with the same priority should be
first-in first-out
» Change priority?




PRIORITY QUEUE

* Applications?




PRIORITY QUEUE

* Applications?
* Hospitals
« CSE course overloads
* Etc...
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PRIORITY QUEUE

 How to implement?

- Keep data sorted (somehow)
* Array?

* Inserting into the middle is costly
(must move other items)

 Linked list?

* Must iterate through entire list to find place
« Cannot move backward if priority changes




PRIORITY QUEUE

 These implementations will all give us the
behavior we want as far as the ADT, but
they may be poor design decisions

* Any other data structures to try?
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* Priority queue implementations?

* Binary search tree?
 Faster insert

* Find? Always deleting the smallest (left-
most) element

* Maintaining FIFO?
« Changing priority?
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PRIORITY QUEUE

Want the speed of trees (but not BST)
Priority Queue has unique demands

Other types of trees?
Review BST first
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PROPERTIES (BST)

* Tree (Binary)
* Root
* (Two) Children

* No cycles
« Search

 Comparable data
 Left child data < parent data
- Smallest child is at the left most node
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PROPERTIES (BST)

* Binary tree may be useful
« Search property doesn’t help

* Always deleting min
* Put min on top!
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HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST




HEAP EXAMPLE

* Only looking at priorities
* Insert something priority 4
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* Now insert priority 6?
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HEAP EXAMPLE

(&

* Now insert priority 6?

 Should come after 4, but no preference
right over left?

« Solution: fill the tree from top to bottom
left to right.




HEAP EXAMPLE

Now insert 2.




HEAP EXAMPLE

Now insert 2.




HEAP EXAMPLE

Could easily have been 4 on the left, but
our left to right top to bottom strategy
determines this solution
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COMPLETENESS

2
e

16 17 18 19 20 21 22 23 24 25

Filling left to right and top to bottom is
another property - completeness




HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

 How does this help?




HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

 How does this help?
* Array implementation




HEAPS

* Insert into array from left to right

 For any parent at index I,
children at 2*i+1 and 2%i+2
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HEAPS

« How to maintain heap property then?
- Parent must be higher priority than
children

 Two functions — percolate up and
percolate down
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 Does the heap work for the Priority
Queue problem?
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* FIFO preservation?




HEAPS

 Does the heap work for the Priority
Queue problem?

* FIFO preservation?

No. Only comparisons are priority.




