
CSE 332
AUGUST 2ND – SCAN, PACK AND
SYNCHRONIZATION

ADMINISTRIVIA
•  Para repo

ADMINISTRIVIA
•  Para repo

•  Everyone should have their own para repo for the four
parallelism assignments

ADMINISTRIVIA
•  Para repo

•  Everyone should have their own para repo for the four
parallelism assignments

ADMINISTRIVIA
•  Para repo

•  Everyone should have their own para repo for the four
parallelism assignments

•  P3

ADMINISTRIVIA
•  Para repo

•  Everyone should have their own para repo for the four
parallelism assignments

•  P3
•  Checkpoint on Friday

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

•  Reduce
•  Return some constant value from the whole array

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

•  Reduce
•  Return some constant value from the whole array

•  Map

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

•  Reduce
•  Return some constant value from the whole array

•  Map
•  Apply some function to each element in the array

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

•  Reduce
•  Return some constant value from the whole array

•  Map
•  Apply some function to each element in the array

•  Together, these are powerful tools of parallelism, but they
may not be sufficient

PARALLEL PRIMATIVES
•  We’re going to introduce two new types of

problems

PARALLEL PRIMATIVES
•  We’re going to introduce two new types of

problems
•  Scan

•  Returns a modified array where each answer depends on
the answer before it

PARALLEL PRIMATIVES
•  We’re going to introduce two new types of

problems
•  Scan

•  Returns a modified array where each answer depends on
the answer before it

•  Pack
•  Filter the array subject to some conditions

PARALLEL PRIMATIVES
•  Scan

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

•  (i.e.) [1,2,3,4] becomes [1,3,6,10]

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

•  (i.e.) [1,2,3,4] becomes [1,3,6,10]
•  This is more complicated than a simple map, the function

requires input from all the data before it.

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

•  (i.e.) [1,2,3,4] becomes [1,3,6,10]
•  This is more complicated than a simple map, the function

requires input from all the data before it.
•  What are some ways we can parallelize this process?

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

•  (i.e.) [1,2,3,4] becomes [1,3,6,10]
•  This is more complicated than a simple map, the function

requires input from all the data before it.
•  What are some ways we can parallelize this process?

•  How do you find the value of a particular node?

PARALLEL PRIMATIVES
•  Partial sum problem

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?
•  Value is going to be the presum + the current value

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?
•  Value is going to be the presum + the current value
•  These presum values are going to be reused!

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?
•  Value is going to be the presum + the current value
•  These presum values are going to be reused!
•  Think about applying a sum reduce!

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?
•  Value is going to be the presum + the current value
•  These presum values are going to be reused!
•  How would you apply a sum reduce!

•  Scan trees!

PARALLEL PRIMATIVES
•  While we’re waiting for the previous values,

we can also be performing our own partial
sums, only now are we dependent on a
certain number of threads to give us our
prescan
•  Consider it a bunch of sum reduce processes that can

communicate with each other

PARALLEL PRIMATIVES
•  While we’re waiting for the previous values,

we can also be performing our own partial
sums, only now are we dependent on a
certain number of threads to give us our
prescan
•  Consider it a bunch of sum reduce processes that can

communicate with each other
•  Still gives us log n span!

PARALLEL PRIMATIVES
•  Final parallel primative

PARALLEL PRIMATIVES
•  Final parallel primative

•  Pack (also known as filter)

PARALLEL PRIMATIVES
•  Final parallel primative

•  Pack (also known as filter)
•  Return an array of all the numbers greater than 7.

PARALLEL PRIMATIVES
•  Final parallel primative

•  Pack (also known as filter)
•  Return an array of all the numbers greater than 7.
•  How do we solve this?

PARALLEL PRIMATIVES
•  Final parallel primative

•  Pack (also known as filter)
•  Return an array of all the numbers greater than 7.
•  How do we solve this?
•  What are the parts of the problem?

PARALLEL PRIMATIVES
•  Final parallel primative

•  Pack (also known as filter)
•  Return an array of all the numbers greater than 7.
•  How do we solve this?
•  What are the parts of the problem?

•  Which numbers are greater than 7

PARALLEL PRIMATIVES
•  Final parallel primative

•  Pack (also known as filter)
•  Return an array of all the numbers greater than 7.
•  How do we solve this?
•  What are the parts of the problem?

•  Which numbers are greater than 7
•  How many of them are there?

PARALLEL PRIMATIVES
•  Final parallel primative

•  Pack (also known as filter)
•  Return an array of all the numbers greater than 7.
•  How do we solve this?
•  What are the parts of the problem?

•  Which numbers are greater than 7
•  How many of them are there? (size of final array)
•  Get the elements in their correct location

PARALLEL PRIMATIVES
•  Final parallel primative

•  Pack (also known as filter)
•  Return an array of all the numbers greater than 7.
•  How do we solve this?
•  What are the parts of the problem?

•  Which numbers are greater than 7
•  How many of them are there? (size of final array)
•  Get the elements in their correct location

PARALLEL PRIMATIVES
•  Packing

PARALLEL PRIMATIVES
•  Packing (naïve approach)

•  First we need to find which elements are greater than 7

PARALLEL PRIMATIVES
•  Packing (naïve approach)

•  First we need to find which elements are greater than 7
•  This is just a map

•  Second, we need to know how many elements are going
to be in our final array

PARALLEL PRIMATIVES
•  Packing (naïve approach)

•  First we need to find which elements are greater than 7
•  This is just a map

•  Second, we need to know how many elements are going
to be in our final array

•  This is just a sum-reduction of the >7 map

PARALLEL PRIMATIVES
•  Packing (naïve approach)

•  First we need to find which elements are greater than 7
•  This is just a map

•  Second, we need to know how many elements are going
to be in our final array

•  This is just a sum-reduction of the >7 map
•  Third, we need to put the correct elements from the

original array into their correct place

PARALLEL PRIMATIVES
•  Packing (naïve approach)

•  First we need to find which elements are greater than 7
•  This is just a map

•  Second, we need to know how many elements are going
to be in our final array

•  This is just a sum-reduction of the >7 map
•  Third, we need to put the correct elements from the

original array into their correct place
•  How do we parallelize this?

PARALLEL PRIMATIVES
•  Packing

•  Need to know the final size of the final array

PARALLEL PRIMATIVES
•  Packing

•  Need to know the final size of the final array
•  Also need to know where the elements are going to end up

PARALLEL PRIMATIVES
•  Packing

•  Need to know the final size of the final array
•  Also need to know where the elements are going to end up
•  Our sum-reduce isn’t helping us there

PARALLEL PRIMATIVES
•  Packing

•  Need to know the final size of the final array
•  Also need to know where the elements are going to end up
•  Our sum-reduce isn’t helping us there
•  Use a sum-scan instead

PARALLEL PRIMATIVES
•  Packing

•  Need to know the final size of the final array
•  Also need to know where the elements are going to end up
•  Our sum-reduce isn’t helping us there
•  Use a sum-scan on the map instead
•  The final value will still be the size

PARALLEL PRIMATIVES
•  Packing

•  Need to know the final size of the final array
•  Also need to know where the elements are going to end up
•  Our sum-reduce isn’t helping us there
•  Use a sum-scan on the map instead
•  The final value will still be the size
•  Intermediate values will be where the objects are

supposed to be stored

PARALLEL PRIMATIVES
•  Packing

•  How is this useful?

PARALLEL PRIMATIVES
•  Packing

•  How is this useful?
•  What algorithm do we know that uses a recursive filter?

PARALLEL PRIMATIVES
•  Packing

•  How is this useful?
•  What algorithm do we know that uses a recursive filter?
•  Quicksort, but there are many others

PARALLEL PRIMATIVES
•  Packing

•  How is this useful?
•  What algorithm do we know that uses a recursive filter?
•  Quicksort, but there are many others

•  Four primitives
•  Map – applies a function to an array
•  Reduce – gets a single result from an array
•  Scan – produces an array where results are dependent
•  Pack – filters the array

PARALLELISM
•  That covers the basics of parallelism

PARALLELISM
•  That covers the basics of parallelism

•  Still two more concepts to cover

PARALLELISM
•  That covers the basics of parallelism

•  Still two more concepts to cover
•  Synchronization and Concurrency

PARALLELISM
•  That covers the basics of parallelism

•  Still two more concepts to cover
•  Synchronization and Concurrency

•  Right now, we only have the ForkJoin infrastructure

PARALLELISM
•  That covers the basics of parallelism

•  Still two more concepts to cover
•  Synchronization and Concurrency

•  Right now, we only have the ForkJoin infrastructure

•  Two assumptions

PARALLELISM
•  That covers the basics of parallelism

•  Still two more concepts to cover
•  Synchronization and Concurrency

•  Right now, we only have the ForkJoin infrastructure

•  Two assumptions
•  Threads are the same code

PARALLELISM
•  That covers the basics of parallelism

•  Still two more concepts to cover
•  Synchronization and Concurrency

•  Right now, we only have the ForkJoin infrastructure

•  Two assumptions
•  Threads are the same code
•  Threads only interact at creation and death

PARALLELISM
•  That covers the basics of parallelism

•  Still two more concepts to cover
•  Synchronization and Concurrency

•  Right now, we only have the ForkJoin infrastructure

•  Two assumptions
•  Threads are the same code
•  Threads only interact at creation and death

•  If we lift these assumptions, there are other new
constraints that we have to consider

CONCURRENCY
•  The computer has finite resources and it

needs to use them as well as it can

CONCURRENCY
•  The computer has finite resources and it

needs to use them as well as it can
•  Multiple threads allow speed up (work v. span) but they

can also allow multiple things to happen at once

CONCURRENCY
•  The computer has finite resources and it

needs to use them as well as it can
•  Multiple threads allow speed up (work v. span) but they

can also allow multiple things to happen at once
•  If a process has to go to the disk, the processor has other

things it can be doing

CONCURRENCY
•  The computer has finite resources and it

needs to use them as well as it can
•  Multiple threads allow speed up (work v. span) but they

can also allow multiple things to happen at once
•  If a process has to go to the disk, the processor has other

things it can be doing
•  We can have multiple tasks accessing the same resources

I/O, the monitor, the CPU, disk, the terminal, etc…

CONCURRENCY
•  The computer has finite resources and it

needs to use them as well as it can
•  Multiple threads allow speed up (work v. span) but they

can also allow multiple things to happen at once
•  If a process has to go to the disk, the processor has other

things it can be doing
•  We can have multiple tasks accessing the same resources

I/O, the monitor, the CPU, disk, the terminal, etc…
•  Competition needs a moderator, and much of this work is

done by the OS

CONCURRENCY
•  The computer has finite resources and it

needs to use them as well as it can
•  Multiple threads allow speed up (work v. span) but they

can also allow multiple things to happen at once
•  If a process has to go to the disk, the processor has other

things it can be doing
•  We can have multiple tasks accessing the same resources

I/O, the monitor, the CPU, disk, the terminal, etc…
•  Competition needs a moderator, and much of this work is

done by the OS
•  But as we saw before, this constraint may not be enough

CONCURRENCY
•  Who was born on the 14th?

CONCURRENCY
•  Who was born on the 14th?

•  We discussed a few options before, and have analyzed a
couple of them

CONCURRENCY
•  Who was born on the 14th?

•  We discussed a few options before, and have analyzed a
couple of them

•  If we don’t control write access, we may get the incorrect
answer

•  In fact, the answer becomes non-deterministic – we cannot
tell what the answer is going to be in advance

CONCURRENCY
•  Start 26 threads that each try to print one of

the English characters to the terminal

CONCURRENCY
•  Start 26 threads that each try to print one of

the English characters to the terminal
•  We can determine that 26 characters will be printed

(unless there’s a kernel panic)

CONCURRENCY
•  Start 26 threads that each try to print one of

the English characters to the terminal
•  We can determine that 26 characters will be printed

(unless there’s a kernel panic, or something)

CONCURRENCY
•  Start 26 threads that each try to print one of

the English characters to the terminal
•  We can determine that 26 characters will be printed

(unless there’s a kernel panic, or something)
•  But, we can’t say what order they’ll be printed in

CONCURRENCY
•  Start 26 threads that each try to print one of

the English characters to the terminal
•  We can determine that 26 characters will be printed

(unless there’s a kernel panic, or something)
•  But, we can’t say what order they’ll be printed in
•  This is called a race condition – the output is determined

by which processes complete first

CONCURRENCY
•  Start 26 threads that each try to print one of

the English characters to the terminal
•  We can determine that 26 characters will be printed

(unless there’s a kernel panic, or something)
•  But, we can’t say what order they’ll be printed in
•  This is called a race condition – the output is determined

by which processes complete first
•  If this can affect the correctness of our solution, we have a

big problem

CONCURRENCY
•  Atomicity

CONCURRENCY
•  Atomicity

•  Some sections of code must be performed all at once
without any interleaving (when two threads are running at
the same time)

•  We call these bits of code a critical section

CONCURRENCY
•  Atomicity

•  Some sections of code must be performed all at once
without any interleaving (when two threads are running at
the same time)

•  We call these bits of code a critical section
•  What is the critical section of our bornOnThe14th problem?

CONCURRENCY
•  Atomicity

•  Some sections of code must be performed all at once
without any interleaving (when two threads are running at
the same time)

•  We call these bits of code a critical section
•  What is the critical section of our bornOnThe14th problem?

•  Read
•  Sum
•  Write

CONCURRENCY
•  Atomicity

•  Some sections of code must be performed all at once
without any interleaving (when two threads are running at
the same time)

•  We call these bits of code a critical section
•  What is the critical section of our bornOnThe14th problem?

•  Read
•  Sum
•  Write

•  Only one thread at a time can be doing this. We need
mutual exclusion

CONCURRENCY
•  Locking

CONCURRENCY
•  Locking

•  To preserve this, we need to lock pieces of
memory and sections of code

•  To do this, we use a Mutex

CONCURRENCY
•  Locking

•  To preserve this, we need to lock pieces of
memory and sections of code

•  To do this, we use a Mutex
•  Has two fundamental functions

•  Lock() – the thread attempts to monopolize the
resource and stalls if the resources is being used

CONCURRENCY
•  Locking

•  To preserve this, we need to lock pieces of
memory and sections of code

•  To do this, we use a Mutex
•  Has two fundamental functions

•  Lock() – the thread attempts to monopolize the
resource and stalls if the resources is being used

•  Unlock() – the thread releases the resource for other
threads to use

•  The mutex needs to be unique for each resource, NOT for
each thread. If the mutex is unique for each thread, then
no stalling actually occurs.

CONCURRENCY
•  Locking

•  What happens if we fail to unlock the mutex
when we’ve finished?

CONCURRENCY
•  Locking

•  What happens if we fail to unlock the mutex
when we’ve finished?

•  Other threads will stall forever and never complete

CONCURRENCY
•  Locking

•  What happens if we fail to unlock the mutex
when we’ve finished?

•  Other threads will stall forever and never complete
•  This is deadlock – but this isn’t hard to prevent, unlock

your resources!

CONCURRENCY
•  Locking

•  What happens if we fail to unlock the mutex
when we’ve finished?

•  Other threads will stall forever and never complete
•  This is deadlock – but this isn’t hard to prevent, unlock

your resources!
•  When can deadlock occur, realistically?

CONCURRENCY
•  Locking

•  What happens if we fail to unlock the mutex
when we’ve finished?

•  Other threads will stall forever and never complete
•  This is deadlock – but this isn’t hard to prevent, unlock

your resources!
•  When can deadlock occur, realistically?

•  What if there are multiple resources, and a process needs
exclusive access to more than one in order to complete
the critical section

CONCURRENCY
•  Locking

•  Anytime multiple threads have access to the
same data structure (no longer constrained to
just arrays), access to that data structure has to
be constrained by the mutexes

CONCURRENCY
•  Locking

•  Anytime multiple threads have access to the
same data structure (no longer constrained to
just arrays), access to that data structure has to
be constrained by the mutexes

•  If two threads need the same two resources and
each has one lock, they will never complete

CONCURRENCY
•  Locking

•  Anytime multiple threads have access to the
same data structure (no longer constrained to
just arrays), access to that data structure has to
be constrained by the mutexes

•  If two threads need the same two resources and
each has one lock, they will never complete

CONCURRENCY
•  Solutions?

CONCURRENCY
•  Solutions?

•  Let go of all of your locks, wait a bit, and try again

CONCURRENCY
•  Solutions?

•  Let go of all of your locks, wait a bit, and try again
•  This can introduce a lot of randomization in runtimes

CONCURRENCY
•  Solutions?

•  Let go of all of your locks, wait a bit, and try again
•  This can introduce a lot of randomization in runtimes

•  Recognize when locks come together, and create a lock
around getting the lock!

CONCURRENCY
•  Solutions?

•  Let go of all of your locks, wait a bit, and try again
•  This can introduce a lot of randomization in runtimes

•  Recognize when locks come together, and create a lock
around getting the lock!

•  Dining philosophers

CONCURRENCY
•  Solutions?

•  Let go of all of your locks, wait a bit, and try again
•  This can introduce a lot of randomization in runtimes

•  Recognize when locks come together, and create a lock
around getting the lock!

•  Dining philosophers
•  This could end up with a lot of locks, how do we resolve

who gets what?

CONCURRENCY
•  Solutions?

•  Let go of all of your locks, wait a bit, and try again
•  This can introduce a lot of randomization in runtimes

•  Recognize when locks come together, and create a lock
around getting the lock!

•  Dining philosophers
•  This could end up with a lot of locks, how do we resolve

who gets what?
•  We usually enforce some sort of ordering, where higher

priority threads get access first

CONCURRENCY
•  Solutions?

•  Let go of all of your locks, wait a bit, and try again
•  This can introduce a lot of randomization in runtimes

•  Recognize when locks come together, and create a lock
around getting the lock!

•  Dining philosophers
•  This could end up with a lot of locks, how do we resolve

who gets what?
•  We usually enforce some sort of ordering, where higher

priority threads get access first
•  Guarantees that computation will finish

CONCURRENCY
•  Not everything has this problem

CONCURRENCY
•  Not everything has this problem

•  Break resources into three types

CONCURRENCY
•  Not everything has this problem

•  Break resources into three types
•  Thread specific -

CONCURRENCY
•  Not everything has this problem

•  Break resources into three types
•  Thread specific – isn’t a problem because no other thread

can access it

CONCURRENCY
•  Not everything has this problem

•  Break resources into three types
•  Thread specific – isn’t a problem because no other thread

can access it
•  Immutable memory – isn’t a problem because no other

thread can change it

CONCURRENCY
•  Not everything has this problem

•  Break resources into three types
•  Thread specific – isn’t a problem because no other thread

can access it
•  Immutable memory – isn’t a problem because no other

thread can change it
•  Shared memory – these are our problem resources

CONCURRENCY
•  Not everything has this problem

•  Break resources into three types
•  Thread specific – isn’t a problem because no other thread

can access it
•  Immutable memory – isn’t a problem because no other

thread can change it
•  Shared memory – these are our problem resources

•  We can resolve some concurrency problems by copying
shared memory into thread specific memory

CONCURRENCY
•  Not everything has this problem

•  Break resources into three types
•  Thread specific – isn’t a problem because no other thread

can access it
•  Immutable memory – isn’t a problem because no other

thread can change it
•  Shared memory – these are our problem resources

•  We can resolve some concurrency problems by copying
shared memory into thread specific memory

•  Provided we don’t write to shared memory based on that
access – this needs to be an atomic, critical section

CONCURRENCY
•  Not everything has this problem

•  Break resources into three types
•  Thread specific – isn’t a problem because no other thread

can access it
•  Immutable memory – isn’t a problem because no other

thread can change it
•  Shared memory – these are our problem resources

•  We can resolve some concurrency problems by copying
shared memory into thread specific memory

•  Provided we don’t write to shared memory based on that
access – this needs to be an atomic, critical section

•  If we force input data to be immutable by design, we also
don’t have to worry about this—this is why in-place sorting
isn’t always good

FRIDAY
•  Concurrency and locking
•  Concurrent design
•  Granularity
•  P3 checkpoint

