CSE 332

AUGUST 2ND — SCAN, PACK AND
SYNCHRONIZATION

ADMINISTRIVIA

 Pararepo

ADMINISTRIVIA

 Pararepo

Everyone should have their own para repo for the four
parallelism assignments

ADMINISTRIVIA

 Pararepo

Everyone should have their own para repo for the four
parallelism assignments

ADMINISTRIVIA

 Pararepo

Everyone should have their own para repo for the four
parallelism assignments

P3

ADMINISTRIVIA

 Pararepo

Everyone should have their own para repo for the four
parallelism assignments

.+ P3
Checkpoint on Friday

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

Reduce
Return some constant value from the whole array

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

Reduce
Return some constant value from the whole array
Map

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

Reduce

Return some constant value from the whole array
Map

Apply some function to each element in the array

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

* Reduce

Return some constant value from the whole array
« Map

Apply some function to each element in the array

 Together, these are powerful tools of parallelism, but they
may not be sufficient

PARALLEL PRIMATIVES

 We’re going to introduce two new types of
problems

PARALLEL PRIMATIVES

 We’re going to introduce two new types of
problems

Scan

Returns a modified array where each answer depends on
the answer before it

PARALLEL PRIMATIVES

 We’re going to introduce two new types of
problems

Scan

Returns a modified array where each answer depends on
the answer before it

Pack
Filter the array subject to some conditions

PARALLEL PRIMATIVES

e Scan

PARALLEL PRIMATIVES

e Scan

Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

PARALLEL PRIMATIVES

e Scan

Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

(i.,e.) [1,2,3,4] becomes [1,3,6,10]

PARALLEL PRIMATIVES

e Scan

« Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

- (i.e.)[1,2,3,4] becomes [1,3,6,10]

« This is more complicated than a simple map, the function
requires input from all the data before it.

PARALLEL PRIMATIVES

« Scan
« Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point
- (i.e.)[1,2,3,4] becomes [1,3,6,10]

« This is more complicated than a simple map, the function
requires input from all the data before it.

« What are some ways we can parallelize this process?

PARALLEL PRIMATIVES

e Scan

« Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

- (i.e.)[1,2,3,4] becomes [1,3,6,10]

« This is more complicated than a simple map, the function
requires input from all the data before it.

« What are some ways we can parallelize this process?
How do you find the value of a particular node?

PARALLEL PRIMATIVES

* Partial sum problem

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it
How to parallelize?

PARALLEL PRIMATIVES

* Partial sum problem
Each node needs information from all the numbers before
it
How to parallelize?
What are some ideas?

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it
How to parallelize?

What are some ideas?

What is the actual function?

PARALLEL PRIMATIVES

« Partial sum problem

* Each node needs information from all the numbers before
it
* How to parallelize?
 What are some ideas”?

- What is the actual function?
* Value is going to be the presum + the current value

PARALLEL PRIMATIVES

« Partial sum problem

« Each node needs information from all the numbers before
it
* How to parallelize?
 What are some ideas?
* What is the actual function?
* Value is going to be the presum + the current value
« These presum values are going to be reused!

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it
How to parallelize?
* What are some ideas?
What is the actual function?
* Value is going to be the presum + the current value
« These presum values are going to be reused!
* Think about applying a sum reduce!

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it
How to parallelize?
* What are some ideas?
What is the actual function?
* Value is going to be the presum + the current value
« These presum values are going to be reused!
* How would you apply a sum reduce!

Scan trees!

PARALLEL PRIMATIVES

 While we’re waiting for the previous values,
we can also be performing our own partial
sums, only now are we dependent on a
certain number of threads to give us our
prescan

« Consider it a bunch of sum reduce processes that can
communicate with each other

PARALLEL PRIMATIVES

 While we’re waiting for the previous values,
we can also be performing our own partial
sums, only now are we dependent on a
certain number of threads to give us our
prescan

« Consider it a bunch of sum reduce processes that can
communicate with each other

- Still gives us log n span!

PARALLEL PRIMATIVES

* Final parallel primative

PARALLEL PRIMATIVES

* Final parallel primative

- Pack (also known as filter)

PARALLEL PRIMATIVES

* Final parallel primative

Pack (also known as filter)
Return an array of all the numbers greater than 7.

PARALLEL PRIMATIVES

* Final parallel primative

Pack (also known as filter)
Return an array of all the numbers greater than 7.
How do we solve this?

PARALLEL PRIMATIVES

* Final parallel primative

Pack (also known as filter)
Return an array of all the numbers greater than 7.
How do we solve this?

« What are the parts of the problem?

PARALLEL PRIMATIVES

* Final parallel primative

- Pack (also known as filter)
- Return an array of all the numbers greater than 7.
* How do we solve this?

« What are the parts of the problem?
Which numbers are greater than 7

PARALLEL PRIMATIVES

* Final parallel primative

- Pack (also known as filter)
- Return an array of all the numbers greater than 7.
* How do we solve this?

« What are the parts of the problem?
Which numbers are greater than 7
How many of them are there?

PARALLEL PRIMATIVES

* Final parallel primative

- Pack (also known as filter)
- Return an array of all the numbers greater than 7.
« How do we solve this?
« What are the parts of the problem?
* Which numbers are greater than 7

* How many of them are there? (size of final array)
« Get the elements in their correct location

PARALLEL PRIMATIVES

* Final parallel primative

- Pack (also known as filter)
- Return an array of all the numbers greater than 7.
« How do we solve this?
« What are the parts of the problem?
* Which numbers are greater than 7

* How many of them are there? (size of final array)
« Get the elements in their correct location

PARALLEL PRIMATIVES

* Packing

PARALLEL PRIMATIVES

* Packing (naive approach)

« First we need to find which elements are greater than 7

PARALLEL PRIMATIVES

* Packing (naive approach)

First we need to find which elements are greater than 7
This is just a map

Second, we need to know how many elements are going
to be in our final array

PARALLEL PRIMATIVES

* Packing (naive approach)

« First we need to find which elements are greater than 7
This is just a map
« Second, we need to know how many elements are going
to be in our final array
This is just a sum-reduction of the >7 map

PARALLEL PRIMATIVES

* Packing (naive approach)

« First we need to find which elements are greater than 7
This is just a map
« Second, we need to know how many elements are going
to be in our final array
This is just a sum-reduction of the >7 map

« Third, we need to put the correct elements from the
original array into their correct place

PARALLEL PRIMATIVES

* Packing (naive approach)

« First we need to find which elements are greater than 7
 Thisis justa map
« Second, we need to know how many elements are going
to be in our final array
« This is just a sum-reduction of the >7 map
« Third, we need to put the correct elements from the
original array into their correct place
How do we parallelize this?

PARALLEL PRIMATIVES

* Packing

* Need to know the final size of the final array

PARALLEL PRIMATIVES

* Packing

Need to know the final size of the final array
« Also need to know where the elements are going to end up

PARALLEL PRIMATIVES

* Packing

Need to know the final size of the final array
« Also need to know where the elements are going to end up
Our sum-reduce isn’t helping us there

PARALLEL PRIMATIVES

* Packing

Need to know the final size of the final array

« Also need to know where the elements are going to end up
Our sum-reduce isn’t helping us there
Use a sum-scan instead

PARALLEL PRIMATIVES

* Packing

* Need to know the final size of the final array

« Also need to know where the elements are going to end up
* Our sum-reduce isn’t helping us there

« Use a sum-scan on the map instead

« The final value will still be the size

PARALLEL PRIMATIVES

* Packing

* Need to know the final size of the final array

« Also need to know where the elements are going to end up
* Our sum-reduce isn’t helping us there

« Use a sum-scan on the map instead

« The final value will still be the size

* Intermediate values will be where the objects are
supposed to be stored

PARALLEL PRIMATIVES

* Packing

 How is this useful?

PARALLEL PRIMATIVES

* Packing

How is this useful?
« What algorithm do we know that uses a recursive filter?

PARALLEL PRIMATIVES

* Packing

How is this useful?
« What algorithm do we know that uses a recursive filter?
Quicksort, but there are many others

PARALLEL PRIMATIVES

* Packing

* How is this useful?
« What algorithm do we know that uses a recursive filter?
* Quicksort, but there are many others

* Four primitives

- Map — applies a function to an array

* Reduce — gets a single result from an array

- Scan — produces an array where results are dependent
* Pack —filters the array

PARALLELISM

« That covers the basics of parallelism

PARALLELISM

« That covers the basics of parallelism

 Still two more concepts to cover

PARALLELISM

« That covers the basics of parallelism

Still two more concepts to cover
Synchronization and Concurrency

PARALLELISM

« That covers the basics of parallelism

 Still two more concepts to cover
« Synchronization and Concurrency
* Right now, we only have the ForkJoin infrastructure

PARALLELISM

« That covers the basics of parallelism

 Still two more concepts to cover
« Synchronization and Concurrency
* Right now, we only have the ForkJoin infrastructure

* Two assumptions

PARALLELISM

« That covers the basics of parallelism

 Still two more concepts to cover
« Synchronization and Concurrency
* Right now, we only have the ForkJoin infrastructure

* Two assumptions
Threads are the same code

PARALLELISM

« That covers the basics of parallelism

 Still two more concepts to cover
« Synchronization and Concurrency
* Right now, we only have the ForkJoin infrastructure

* Two assumptions
Threads are the same code
Threads only interact at creation and death

PARALLELISM

« That covers the basics of parallelism

 Still two more concepts to cover
« Synchronization and Concurrency
* Right now, we only have the ForkJoin infrastructure

* Two assumptions
Threads are the same code
Threads only interact at creation and death

« |If we lift these assumptions, there are other new
constraints that we have to consider

CONCURRENCY

 The computer has finite resources and it
needs to use them as well as it can

CONCURRENCY

 The computer has finite resources and it
needs to use them as well as it can

- Multiple threads allow speed up (work v. span) but they
can also allow multiple things to happen at once

CONCURRENCY

 The computer has finite resources and it
needs to use them as well as it can

- Multiple threads allow speed up (work v. span) but they
can also allow multiple things to happen at once

- |f a process has to go to the disk, the processor has other
things it can be doing

CONCURRENCY

 The computer has finite resources and it
needs to use them as well as it can

- Multiple threads allow speed up (work v. span) but they
can also allow multiple things to happen at once

- |f a process has to go to the disk, the processor has other
things it can be doing

* We can have multiple tasks accessing the same resources
I/0, the monitor, the CPU, disk, the terminal, etc...

CONCURRENCY

 The computer has finite resources and it
needs to use them as well as it can

- Multiple threads allow speed up (work v. span) but they
can also allow multiple things to happen at once

- |f a process has to go to the disk, the processor has other
things it can be doing

* We can have multiple tasks accessing the same resources
I/0, the monitor, the CPU, disk, the terminal, etc...

« Competition needs a moderator, and much of this work is
done by the OS

CONCURRENCY

 The computer has finite resources and it
needs to use them as well as it can

Multiple threads allow speed up (work v. span) but they
can also allow multiple things to happen at once

If a process has to go to the disk, the processor has other
things it can be doing

We can have multiple tasks accessing the same resources
I/0, the monitor, the CPU, disk, the terminal, etc...

Competition needs a moderator, and much of this work is
done by the OS

But as we saw before, this constraint may not be enough

CONCURRENCY

« Who was born on the 14th?

CONCURRENCY

« Who was born on the 14th?

« We discussed a few options before, and have analyzed a
couple of them

CONCURRENCY

« Who was born on the 14th?

« We discussed a few options before, and have analyzed a
couple of them

« |f we don’t control write access, we may get the incorrect
answer

* |n fact, the answer becomes non-deterministic — we cannot
tell what the answer is going to be in advance

CONCURRENCY

« Start 26 threads that each try to print one of
the English characters to the terminal

CONCURRENCY

« Start 26 threads that each try to print one of
the English characters to the terminal

« We can determine that 26 characters will be printed
(unless there’s a kernel panic)

CONCURRENCY

« Start 26 threads that each try to print one of
the English characters to the terminal

« We can determine that 26 characters will be printed
(unless there’s a kernel panic, or something)

CONCURRENCY

« Start 26 threads that each try to print one of
the English characters to the terminal

« We can determine that 26 characters will be printed
(unless there’s a kernel panic, or something)

- But, we can’t say what order they’ll be printed in

CONCURRENCY

« Start 26 threads that each try to print one of
the English characters to the terminal

« We can determine that 26 characters will be printed
(unless there’s a kernel panic, or something)

- But, we can’t say what order they’ll be printed in

« This is called a race condition — the output is determined
by which processes complete first

CONCURRENCY

« Start 26 threads that each try to print one of
the English characters to the terminal

« We can determine that 26 characters will be printed
(unless there’s a kernel panic, or something)

- But, we can’t say what order they’ll be printed in

« This is called a race condition — the output is determined
by which processes complete first

* |f this can affect the correctness of our solution, we have a
big problem

CONCURRENCY

« Atomicity

CONCURRENCY

« Atomicity

« Some sections of code must be performed all at once
without any interleaving (when two threads are running at
the same time)

We call these bits of code a critical section

CONCURRENCY

« Atomicity

« Some sections of code must be performed all at once
without any interleaving (when two threads are running at
the same time)

We call these bits of code a critical section
« What is the critical section of our bornOnThe14th problem?

CONCURRENCY

« Atomicity

« Some sections of code must be performed all at once
without any interleaving (when two threads are running at
the same time)

« We call these bits of code a critical section

« What is the critical section of our bornOnThe14th problem?

Read
 Sum
Write

CONCURRENCY

« Atomicity

Some sections of code must be performed all at once
without any interleaving (when two threads are running at
the same time)

We call these bits of code a critical section
What is the critical section of our bornOnThe14th problem?
Read

e Sum
Write

Only one thread at a time can be doing this. We need
mutual exclusion

CONCURRENCY

* Locking

CONCURRENCY

* Locking

» To preserve this, we need to lock pieces of
memory and sections of code

* To do this, we use a Mutex

CONCURRENCY

* Locking

» To preserve this, we need to lock pieces of
memory and sections of code

* To do this, we use a Mutex

 Has two fundamental functions

* Lock() — the thread attempts to monopolize the
resource and stalls if the resources is being used

CONCURRENCY

* Locking

» To preserve this, we need to lock pieces of
memory and sections of code

* To do this, we use a Mutex

 Has two fundamental functions

* Lock() — the thread attempts to monopolize the
resource and stalls if the resources is being used

* Unlock() — the thread releases the resource for other
threads to use

* The mutex needs to be unique for each resource, NOT for
each thread. If the mutex is unique for each thread, then
no stalling actually occurs.

CONCURRENCY

* Locking

« What happens if we fail to unlock the mutex
when we've finished?

CONCURRENCY

* Locking

« What happens if we fail to unlock the mutex
when we’ve finished?
Other threads will stall forever and never complete

CONCURRENCY

* Locking

« What happens if we fail to unlock the mutex
when we've finished?

» Other threads will stall forever and never complete

* This is deadlock — but this isn’t hard to prevent, unlock
your resources!

CONCURRENCY

* Locking

« What happens if we fail to unlock the mutex
when we've finished?

» Other threads will stall forever and never complete

* This is deadlock — but this isn’t hard to prevent, unlock
your resources!

* When can deadlock occur, realistically?

CONCURRENCY

* Locking

« What happens if we fail to unlock the mutex
when we've finished?

» Other threads will stall forever and never complete

* This is deadlock — but this isn’t hard to prevent, unlock
your resources!

* When can deadlock occur, realistically?

« What if there are multiple resources, and a process needs
exclusive access to more than one in order to complete
the critical section

CONCURRENCY

* Locking

* Anytime multiple threads have access to the
same data structure (no longer constrained to
just arrays), access to that data structure has to
be constrained by the mutexes

CONCURRENCY

* Locking

* Anytime multiple threads have access to the
same data structure (no longer constrained to

just arrays), access to that data structure has to
be constrained by the mutexes

* |f two threads need the same two resources and
each has one lock, they will never complete

CONCURRENCY

* Locking

* Anytime multiple threads have access to the
same data structure (no longer constrained to

just arrays), access to that data structure has to
be constrained by the mutexes

* |f two threads need the same two resources and
each has one lock, they will never complete

CONCURRENCY

« Solutions?

CONCURRENCY

« Solutions?

Let go of all of your locks, wait a bit, and try again

CONCURRENCY

« Solutions?

Let go of all of your locks, wait a bit, and try again
This can introduce a lot of randomization in runtimes

CONCURRENCY

« Solutions?

- Let go of all of your locks, wait a bit, and try again
This can introduce a lot of randomization in runtimes

* Recognize when locks come together, and create a lock
around getting the lock!

CONCURRENCY

« Solutions?

- Let go of all of your locks, wait a bit, and try again
* This can introduce a lot of randomization in runtimes

* Recognize when locks come together, and create a lock
around getting the lock!

* Dining philosophers

CONCURRENCY

« Solutions?

- Let go of all of your locks, wait a bit, and try again
« This can introduce a lot of randomization in runtimes
* Recognize when locks come together, and create a lock
around getting the lock!
* Dining philosophers
* This could end up with a lot of locks, how do we resolve
who gets what?

CONCURRENCY

« Solutions?

- Let go of all of your locks, wait a bit, and try again
« This can introduce a lot of randomization in runtimes
* Recognize when locks come together, and create a lock
around getting the lock!
* Dining philosophers
* This could end up with a lot of locks, how do we resolve

who gets what?

* We usually enforce some sort of ordering, where higher
priority threads get access first

CONCURRENCY

Solutions?

Let go of all of your locks, wait a bit, and try again

« This can introduce a lot of randomization in runtimes
Recognize when locks come together, and create a lock
around getting the lock!

* Dining philosophers
This could end up with a lot of locks, how do we resolve

who gets what?

* We usually enforce some sort of ordering, where higher
priority threads get access first

* Guarantees that computation will finish

CONCURRENCY

* Not everything has this problem

CONCURRENCY

* Not everything has this problem

- Break resources into three types

CONCURRENCY

* Not everything has this problem

Break resources into three types
Thread specific -

CONCURRENCY

* Not everything has this problem

- Break resources into three types

Thread specific — isn’t a problem because no other thread
can access it

CONCURRENCY

* Not everything has this problem

- Break resources into three types

» Thread specific — isn’t a problem because no other thread
can access it

* Immutable memory — isn’t a problem because no other
thread can change it

CONCURRENCY

* Not everything has this problem

- Break resources into three types

» Thread specific — isn’t a problem because no other thread
can access it

* Immutable memory — isn’t a problem because no other
thread can change it

* Shared memory — these are our problem resources

CONCURRENCY

* Not everything has this problem

- Break resources into three types

» Thread specific — isn’t a problem because no other thread
can access it

* Immutable memory — isn’t a problem because no other
thread can change it

* Shared memory — these are our problem resources

* We can resolve some concurrency problems by copying
shared memory into thread specific memory

CONCURRENCY

* Not everything has this problem

- Break resources into three types

» Thread specific — isn’t a problem because no other thread
can access it

* Immutable memory — isn’t a problem because no other
thread can change it

* Shared memory — these are our problem resources

* We can resolve some concurrency problems by copying
shared memory into thread specific memory

* Provided we don’t write to shared memory based on that
access — this needs to be an atomic, critical section

CONCURRENCY

* Not everything has this problem

- Break resources into three types

» Thread specific — isn’t a problem because no other thread
can access it

* Immutable memory — isn’t a problem because no other
thread can change it

* Shared memory — these are our problem resources

* We can resolve some concurrency problems by copying
shared memory into thread specific memory

* Provided we don’t write to shared memory based on that
access — this needs to be an atomic, critical section

 If we force input data to be immutable by design, we also
don’t have to worry about this—this is why in-place sorting
isn’'t always good

FRIDAY

« Concurrency and locking
« Concurrent design

* Granularity

 P3 checkpoint

