
CSE 332 
JULY 21ST  – SORTING & INTRO TO 
PARALLELISM 
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MIDTERM RECAP 
•  Several students lost points because they 

were unable to finish 
•  Want exams to be test of knowledge, not 

necessarily about test taking 
•  By Saturday night, email me if you’d like to 

redo a problem. 
•  On Monday, in the late afternoon, you’ll get a 

replacement design decision question and 
you’ll have 24 hours to complete a very 
thorough evaluation. 
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MIDTERM RECAP 
•  Several students lost points because they 

were unable to finish 
•  For one token, you may replace an one 

exam question with the score you receive on 
the assignment 



SORTING 
•  Important definitions 

•  In-place: Requires only O(1) extra memory 
•  usually means the array is mutated 

•  Stable: For any two elements have the same 
comparative value, then after the sort, which 
ever came first will stay first 

•  Sorting by first name and then last name 
will give you last then first with a stable 
sort. 

•  The most recent sort will always be the 
primary 



SORTING 
•  Important definitions 

•  Interruptable: the algorithm can run only until 
the first k elements are in sorted order 

•  Comparison sort: utilizes comparisons 
between elements to produce the final sorted 
order. 

•  Bogo sort is not a comparison sort 
•  Comparison sorts are Ω(n log n), they cannot do 

better than this 



QUICK SORT 
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QUICK SORT 

Unsorted 

<= P > P  

Divide: Pick a pivot, partition into 
groups 

Sorted 

<= P > P 

Conquer: Return array when length 
≤ 1 

Combine: Combine sorted partitions and pivot 

P 

P 



QUICK SORT 
PSEUDOCODE 
Core idea: Pick some item from the array and call it the pivot. Put all 
items smaller in the pivot into one group and all items larger in the 
other and recursively sort. If the array has size 0 or 1, just return it 
unchanged. 

quicksort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !pivot = getPivot(input);!
! !smallerHalf = sort(getSmaller(pivot, input));!
! !largerHalf = sort(getBigger(pivot, input));!
! !return smallerHalf + pivot + largerHalf;!
!}!

}!



QUICKSORT 
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S select pivot value 

13 81 92 
43 65 

31 

57 26 

75 0 
S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
Quicksort(S1) and 

Quicksort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 



QUICKSORT 
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PIVOTS 
Best pivot? 

•  Median 
•  Halve each time 

 

 

 

Worst pivot? 
•  Greatest/least element 
•  Problem of size n - 1 
•  O(n2) 

2  4   3   1 8   9   6 

8 2 9 4 5 3 1 6 

5 

8  2  9  4  5  3  6 

8 2 9 4 5 3 1 6 

1 



POTENTIAL PIVOT 
RULES 
While sorting arr from lo (inclusive) to hi (exclusive)… 

 
Pick arr[lo] or arr[hi-1] 

•  Fast, but worst-case occurs with mostly sorted input 

Pick random element in the range 
•  Does as well as any technique, but (pseudo)random number 

generation can be slow 
•  Still probably the most elegant approach 

Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2] 
•  Common heuristic that tends to work well 



PARTITIONING 
Conceptually simple, but hardest part to code up correctly 

•  After picking pivot, need to partition in linear time in place 

One approach (there are slightly fancier ones): 
1.  Swap pivot with arr[lo] 
2.  Use two counters i and j, starting at lo+1 and hi-1 
3.   while (i < j) 

   if (arr[j] > pivot) j-- 
   else if (arr[i] < pivot) i++ 
   else swap arr[i] with arr[j] 

4.  Swap pivot with arr[i] * 

*skip step 4 if pivot ends up being least element 

17 



EXAMPLE 
Step one: pick pivot as median of 3 

•  lo = 0, hi = 10 

 

6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

•  Step two: move pivot to the lo position 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



EXAMPLE 
Now partition in place 
 
 
Move cursors 
 
 
Swap 
 
Move cursors 
 
 
Move pivot 
 

6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  
one swap during partition –  
this is a short example 

5 1 4 2 0 3 6 9 7 8 



QUICK SORT EXAMPLE: DIVIDE 

7 3 8 4 5 2 1 6 

Pivot rule: pick the element at index 0 

7 3 8 4 5 2 1 

3 4 5 2 1 

6 

6 

2 1 4 5 6 

5 6 



QUICK SORT EXAMPLE: COMBINE 

7 3 8 4 5 2 1 6 

Combine: this is the order of the elements we’ll care about when 
combining 

7 3 8 4 5 2 1 

3 4 5 2 1 

6 

6 

2 1 4 5 6 

5 6 



QUICK SORT EXAMPLE: COMBINE 

1 2 3 4 5 6 7 8 

Combine: put left partition < pivot < right partition 

7 1 8 2 3 4 5 

3 4 5 1 2 

6 

6 

2 1 4 5 6 

5 6 



MEDIAN PIVOT EXAMPLE 

23 

2 8 4 5 3 1 6 

Pick the median of first, middle, and last 

7 Median = 6 

Swap the median with the first value 

2 8 4 5 3 1 6 7 

2 8 4 5 3 1 7 6 

Pivot is now at index 0, and we’re ready to go 



PARTITIONING 
Conceptually simple, but hardest part to code up correctly 

•  After picking pivot, need to partition in linear time in place 

One approach (there are slightly fancier ones): 
1.  Put pivot in index lo 
2.  Use two pointers i and j, starting at lo+1 and hi-1 
3.   while (i < j) 

   if (arr[j] > pivot) j-- 
   else if (arr[i] < pivot) i++ 
   else swap arr[i] with arr[j] 

4.  Swap pivot with arr[i] * 

*skip step 4 if pivot ends up being least element 
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EXAMPLE 
Step one: pick pivot as median of 3 

•  lo = 0, hi = 10 

 

6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

•  Step two: move pivot to the lo position 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



QUICK SORT PARTITION EXAMPLE 
6 1 4 9 0 3 5 7 2 8 

6 1 4 2 0 3 5 7 9 8 

5 1 4 2 0 3 6 7 9 8 

6 1 4 9 0 3 5 7 2 8 

6 1 4 9 0 3 5 7 2 8 

6 1 4 9 0 3 5 7 2 8 

6 1 4 2 0 3 5 7 9 8 



CUTOFFS 
For small n, all that recursion tends to cost more than doing a 
quadratic sort 

•  Remember asymptotic complexity is for large n 

Common engineering technique: switch algorithm below a 
cutoff 

•  Reasonable rule of thumb: use insertion sort for n < 10 

Notes: 
•  Could also use a cutoff for merge sort 
•  Cutoffs are also the norm with parallel algorithms  

•  Switch to sequential algorithm 
•  None of this affects asymptotic complexity 



QUICK SORT ANALYSIS 
Best-case: Pivot is always the median 

  T(0)=T(1)=1 
  T(n)=2T(n/2) + n           -- linear-time partition 
  Same recurrence as mergesort: O(n log n) 

 
Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 
              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 
 
Average-case (e.g., with random pivot) 

•  O(n log n), not responsible for proof 
 



HOW FAST CAN WE 
SORT? 

Heapsort & mergesort have O(n log n) worst-case running time 
 
Quicksort has O(n log n) average-case running time 

 
•  Assuming our comparison model: The only operation an algorithm can 

perform on data items is a 2-element comparison.  There is no lower 
asymptotic complexity, such as O(n) or O(n  log log n) 
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COUNTING 
COMPARISONS 
No matter what the algorithm is, it cannot make progress 
without doing comparisons 
 
•  Intuition: Each comparison can at best eliminate half  the 

remaining possibilities of possible orderings 
 
Can represent this process as a decision tree 

•  Nodes contain “set of remaining possibilities” 
•  Edges are “answers from a comparison” 
•  The algorithm does not actually build the tree; it’s what our 

proof uses to represent “the most the algorithm could know so 
far” as the algorithm progresses 



DECISION TREE FOR N 
= 3 

a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

•  The leaves contain all the possible orderings of a, b, c 



EXAMPLE IF A < C < B 
a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

possible orders 

actual order 



DECISION TREE 
A binary tree because each comparison has 2 
outcomes  (we’re comparing 2 elements at a time) 
Because any data is possible, any algorithm needs 
to ask enough questions to produce all orderings. 
 
The facts we can get from that: 

1.  Each ordering is a different leaf (only one is correct) 
2.  Running any algorithm on any input will at best correspond to a root-to-

leaf path in some decision tree.  Worst number of comparisons is the 
longest path from root-to-leaf in the decision tree for input size n 

3.  There is no worst-case running time better than the height of a tree with 
<num possible orderings> leaves 



POSSIBLE ORDERINGS 
Assume we have n elements to sort. How many permutations of the elements (possible 
orderings)? 

•  For simplicity, assume none are equal (no duplicates) 

Example, n=3 

  a[0]<a[1]<a[2]   a[0]<a[2]<a[1] 
  a[1]<a[0]<a[2] 

         a[1]<a[2]<a[0]   a[2]<a[0]<a[1] 
  a[2]<a[1]<a[0] 

 
 
In general, n choices for least element, n-1 for next, n-2 for next, … 

•  n(n-1)(n-2)…(2)(1) = n!  possible orderings 
 

That means with n! possible leaves, best height for tree is log(n!), given that best case tree 
splits leaves in half at each branch 

 
 

 



RUNTIME 

38 

That proves runtime is at least Ω(log (n!)).  Can we write that more clearly? 

Nice! Any sorting algorithm must do at best (1/2)*(nlog n – n) comparisons: 
Ω(nlog n) 
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SORTING 
•  This is the lower bound for comparison sorts 
•  How can non-comparison sorts work better? 

•  They need to know something about the data 
•  Strings and Ints are very well ordered 

•  If I told you to put “Apple” into a list of words, 
where would you put it? 
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SORTING 
•  “Slow” sorts 

•  Insertion 
•  Selection 

•  “Fast” sorts 
•  Quick 
•  Merge 
•  Heap 

•  These are all comparison sorts, can’t do 
better than O(n log n) 
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SORTING 
•  Non-comparison sorts 

•  If we know something about the data, we 
don’t strictly need to compare objects to each 
other 

•  If there are only a few possible values and 
we know what they are, we can just sort by 
identifying the value 

•  If the data are strings and ints of finite length, 
then we can take advantage of their sorted 
order. 
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SORTING 
•  Two sorting techniques we use to this end 

•  Bucket sort 
•  Radix sort 

•  If the data is sufficiently structured, we can 
get O(n) runtimes 



BUCKETSORT 
If all values to be sorted are known to be integers between 1 
and K (or any small range): 

•  Create an array of size K  
•  Put each element in its proper bucket (a.k.a. bin) 
•  If data is only integers, no need to store more than a count of 

how times that bucket has been used 

Output result via linear pass through array of buckets 

count array 
1 3 
2 1 
3 2 
4 2 
5 3 

•  Example:  
K=5 
input (5,1,3,4,3,2,1,1,5,4,5) 

   output: 1,1,1,2,3,3,4,4,5,5,5 



ANALYZING BUCKET SORT 
Overall: O(n+K) 

•  Linear in n, but also linear in K 
 

Good when K is smaller (or not much larger) than n 

•  We don’t spend time doing comparisons of duplicates 

Bad when K is much larger than n 
•  Wasted space; wasted time during linear O(K) pass 

 
For data in addition to integer keys, use list at each 
bucket 



BUCKET SORT 
Most real lists aren’t just keys; we have data 
Each bucket is a list (say, linked list) 
To add to a bucket, insert in O(1) (at beginning, or keep pointer to 
last element) 

count array 

1 

2 

3 

4 

5 

•  Example: Movie ratings; scale 1-5 
Input: 

 5: Casablanca 
 3: Harry Potter movies 
 5: Star Wars Original Trilogy 
 1: Rocky V 

Rocky V 

Harry Potter 

Casablanca Star Wars 

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star 
Wars 
• Easy to keep ‘stable’; Casablanca still before Star Wars 



RADIX SORT 
Radix = “the base of a number system” 

•  Examples will use base 10 because we are used to that 
•  In implementations use larger numbers 

•  For example, for ASCII strings, might use 128 

Idea: 

•  Bucket sort on one digit at a time 
•  Number of buckets = radix 
•  Starting with least significant digit 
•  Keeping sort stable 

•  Do one pass per digit 
•  Invariant: After k passes (digits), the last k digits are 

sorted 



RADIX SORT EXAMPLE 
Radix = 10 
 
Input:   478, 537, 9, 721, 3, 38, 143, 67 
 
3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted 
in yellow 

4 7 8 
5 3 7 
0 0 9 
7 2 1 
0 0 3 
0 3 8 
1 4 3 
0 6 7 

 
 
 

7 2 1 
0 0 3 
1 4 3 
5 3 7 
0 6 7 
4 7 8 
0 3 8 
0 0 9 

 
 
 

0 0 3 
0 0 9 
7 2 1 
5 3 7 
0 3 8 
1 4 3 
0 6 7 
4 7 8 

 
 
 

0 0 3 
0 0 9 
0 3 8 
0 6 7 
1 4 3 
4 7 8 
5 3 7 
7 2 1 



ANALYSIS 
Input size: n 
Number of buckets = Radix: B 
Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 
•  Example: Strings of English letters up to length 15 

•  Run-time proportional to: 15*(52 + n)  
•   This is less than n log n only if n > 33,000 
•  Of course, cross-over point depends on constant factors of the 

implementations 
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•  Bucket sort good for small number of possible key values 
•  Radix sort uses fewer buckets and more phases 

Best way to sort?  It depends! 



SORTING TAKEAWAYS 
Simple O(n2) sorts can be fastest for small n 

•  Selection sort, Insertion sort (latter linear for mostly-sorted) 
•  Good for “below a cut-off” to help divide-and-conquer sorts 

O(n log n) sorts 
•  Heap sort, in-place but not stable nor parallelizable 
•  Merge sort, not in place but stable and works as external sort 
•  Quick sort, in place but not stable and O(n2) in worst-case 

•  Often fastest, but depends on costs of comparisons/copies 
Ω (n log n) is worst-case and average lower-bound for sorting by 
comparisons 
Non-comparison sorts 

•  Bucket sort good for small number of possible key values 
•  Radix sort uses fewer buckets and more phases 

Best way to sort?  It depends! 


