
CSE 332
JULY 21ST – SORTING & INTRO TO
PARALLELISM

MIDTERM RECAP
•  Several students lost points because they

were unable to finish

MIDTERM RECAP
•  Several students lost points because they

were unable to finish
•  Want exams to be test of knowledge, not

necessarily about test taking

MIDTERM RECAP
•  Several students lost points because they

were unable to finish
•  Want exams to be test of knowledge, not

necessarily about test taking
•  By Saturday night, email me if you’d like to

redo a problem.

MIDTERM RECAP
•  Several students lost points because they

were unable to finish
•  Want exams to be test of knowledge, not

necessarily about test taking
•  By Saturday night, email me if you’d like to

redo a problem.
•  On Monday, in the late afternoon, you’ll get a

replacement design decision question and
you’ll have 24 hours to complete a very
thorough evaluation.

MIDTERM RECAP
•  Several students lost points because they

were unable to finish
•  For one token, you may replace an one

exam question with the score you receive on
the assignment

MIDTERM RECAP
•  Several students lost points because they

were unable to finish
•  For one token, you may replace an one

exam question with the score you receive on
the assignment

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

•  Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

•  Sorting by first name and then last name
will give you last then first with a stable
sort.

•  The most recent sort will always be the
primary

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

•  Bogo sort is not a comparison sort
•  Comparison sorts are Ω(n log n), they cannot do

better than this

QUICK SORT

5

2 8 4 7 3 1 6

Divide: Split array around a ‘pivot’

5

2 4

3

7

6

8

1

numbers <=
pivot

numbers > pivot

pivo
t

QUICK SORT

Unsorted

<= P > P

Divide: Pick a pivot, partition into
groups

Sorted

<= P > P

Conquer: Return array when length
≤ 1

Combine: Combine sorted partitions and pivot

P

P

QUICK SORT
PSEUDOCODE
Core idea: Pick some item from the array and call it the pivot. Put all
items smaller in the pivot into one group and all items larger in the
other and recursively sort. If the array has size 0 or 1, just return it
unchanged.

quicksort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !pivot = getPivot(input);!
! !smallerHalf = sort(getSmaller(pivot, input));!
! !largerHalf = sort(getBigger(pivot, input));!
! !return smallerHalf + pivot + largerHalf;!
!}!

}!

QUICKSORT

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 81 92
43 65

31

57 26

75 0
S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
Quicksort(S1) and

Quicksort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

QUICKSORT

14

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

8 3

1

6 8 9

PIVOTS
Best pivot?

•  Median
•  Halve each time

Worst pivot?
•  Greatest/least element
•  Problem of size n - 1
•  O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

POTENTIAL PIVOT
RULES
While sorting arr from lo (inclusive) to hi (exclusive)…

Pick arr[lo] or arr[hi-1]

•  Fast, but worst-case occurs with mostly sorted input

Pick random element in the range
•  Does as well as any technique, but (pseudo)random number

generation can be slow
•  Still probably the most elegant approach

Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
•  Common heuristic that tends to work well

PARTITIONING
Conceptually simple, but hardest part to code up correctly

•  After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):
1.  Swap pivot with arr[lo]
2.  Use two counters i and j, starting at lo+1 and hi-1
3.   while (i < j)

 if (arr[j] > pivot) j--
 else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]

4.  Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

17

EXAMPLE
Step one: pick pivot as median of 3

•  lo = 0, hi = 10

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

•  Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

EXAMPLE
Now partition in place

Move cursors

Swap

Move cursors

Move pivot

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

QUICK SORT EXAMPLE: DIVIDE

7 3 8 4 5 2 1 6

Pivot rule: pick the element at index 0

7 3 8 4 5 2 1

3 4 5 2 1

6

6

2 1 4 5 6

5 6

QUICK SORT EXAMPLE: COMBINE

7 3 8 4 5 2 1 6

Combine: this is the order of the elements we’ll care about when
combining

7 3 8 4 5 2 1

3 4 5 2 1

6

6

2 1 4 5 6

5 6

QUICK SORT EXAMPLE: COMBINE

1 2 3 4 5 6 7 8

Combine: put left partition < pivot < right partition

7 1 8 2 3 4 5

3 4 5 1 2

6

6

2 1 4 5 6

5 6

MEDIAN PIVOT EXAMPLE

23

2 8 4 5 3 1 6

Pick the median of first, middle, and last

7 Median = 6

Swap the median with the first value

2 8 4 5 3 1 6 7

2 8 4 5 3 1 7 6

Pivot is now at index 0, and we’re ready to go

PARTITIONING
Conceptually simple, but hardest part to code up correctly

•  After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):
1.  Put pivot in index lo
2.  Use two pointers i and j, starting at lo+1 and hi-1
3.   while (i < j)

 if (arr[j] > pivot) j--
 else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]

4.  Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

24 C
SE

37
3

: D
at

a
St

ru
ct

u
re

s
&

A

lg
or

it
hm

s

EXAMPLE
Step one: pick pivot as median of 3

•  lo = 0, hi = 10

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

•  Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

QUICK SORT PARTITION EXAMPLE
6 1 4 9 0 3 5 7 2 8

6 1 4 2 0 3 5 7 9 8

5 1 4 2 0 3 6 7 9 8

6 1 4 9 0 3 5 7 2 8

6 1 4 9 0 3 5 7 2 8

6 1 4 9 0 3 5 7 2 8

6 1 4 2 0 3 5 7 9 8

CUTOFFS
For small n, all that recursion tends to cost more than doing a
quadratic sort

•  Remember asymptotic complexity is for large n

Common engineering technique: switch algorithm below a
cutoff

•  Reasonable rule of thumb: use insertion sort for n < 10

Notes:
•  Could also use a cutoff for merge sort
•  Cutoffs are also the norm with parallel algorithms

•  Switch to sequential algorithm
•  None of this affects asymptotic complexity

QUICK SORT ANALYSIS
Best-case: Pivot is always the median

 T(0)=T(1)=1
 T(n)=2T(n/2) + n -- linear-time partition
 Same recurrence as mergesort: O(n log n)

Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1
 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

Average-case (e.g., with random pivot)

•  O(n log n), not responsible for proof

HOW FAST CAN WE
SORT?

Heapsort & mergesort have O(n log n) worst-case running time

Quicksort has O(n log n) average-case running time

•  Assuming our comparison model: The only operation an algorithm can

perform on data items is a 2-element comparison. There is no lower
asymptotic complexity, such as O(n) or O(n log log n)

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

•  Intuition: Each comparison can at best eliminate half the

remaining possibilities of possible orderings

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

•  Intuition: Each comparison can at best eliminate half the

remaining possibilities of possible orderings

Can represent this process as a decision tree

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

•  Intuition: Each comparison can at best eliminate half the

remaining possibilities of possible orderings

Can represent this process as a decision tree

•  Nodes contain “set of remaining possibilities”
•  Edges are “answers from a comparison”
•  The algorithm does not actually build the tree; it’s what our

proof uses to represent “the most the algorithm could know so
far” as the algorithm progresses

DECISION TREE FOR N
= 3

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

•  The leaves contain all the possible orderings of a, b, c

EXAMPLE IF A < C < B
a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

DECISION TREE
A binary tree because each comparison has 2
outcomes (we’re comparing 2 elements at a time)
Because any data is possible, any algorithm needs
to ask enough questions to produce all orderings.

The facts we can get from that:

1.  Each ordering is a different leaf (only one is correct)
2.  Running any algorithm on any input will at best correspond to a root-to-

leaf path in some decision tree. Worst number of comparisons is the
longest path from root-to-leaf in the decision tree for input size n

3.  There is no worst-case running time better than the height of a tree with
<num possible orderings> leaves

POSSIBLE ORDERINGS
Assume we have n elements to sort. How many permutations of the elements (possible
orderings)?

•  For simplicity, assume none are equal (no duplicates)

Example, n=3

 a[0]<a[1]<a[2] a[0]<a[2]<a[1]
 a[1]<a[0]<a[2]

 a[1]<a[2]<a[0] a[2]<a[0]<a[1]
 a[2]<a[1]<a[0]

In general, n choices for least element, n-1 for next, n-2 for next, …

•  n(n-1)(n-2)…(2)(1) = n! possible orderings

That means with n! possible leaves, best height for tree is log(n!), given that best case tree
splits leaves in half at each branch

RUNTIME

38

That proves runtime is at least Ω(log (n!)). Can we write that more clearly?

Nice! Any sorting algorithm must do at best (1/2)*(nlog n – n) comparisons:
Ω(nlog n)

SORTING
•  This is the lower bound for comparison sorts

SORTING
•  This is the lower bound for comparison sorts
•  How can non-comparison sorts work better?

SORTING
•  This is the lower bound for comparison sorts
•  How can non-comparison sorts work better?

•  They need to know something about the data

SORTING
•  This is the lower bound for comparison sorts
•  How can non-comparison sorts work better?

•  They need to know something about the data
•  Strings and Ints are very well ordered

SORTING
•  This is the lower bound for comparison sorts
•  How can non-comparison sorts work better?

•  They need to know something about the data
•  Strings and Ints are very well ordered

•  If I told you to put “Apple” into a list of words,
where would you put it?

SORTING
•  “Slow” sorts

SORTING
•  “Slow” sorts

•  Insertion
•  Selection

SORTING
•  “Slow” sorts

•  Insertion
•  Selection

•  “Fast” sorts

SORTING
•  “Slow” sorts

•  Insertion
•  Selection

•  “Fast” sorts
•  Quick
•  Merge
•  Heap

SORTING
•  “Slow” sorts

•  Insertion
•  Selection

•  “Fast” sorts
•  Quick
•  Merge
•  Heap

•  These are all comparison sorts, can’t do
better than O(n log n)

SORTING
•  Non-comparison sorts

SORTING
•  Non-comparison sorts

•  If we know something about the data, we
don’t strictly need to compare objects to each
other

SORTING
•  Non-comparison sorts

•  If we know something about the data, we
don’t strictly need to compare objects to each
other

•  If there are only a few possible values and
we know what they are, we can just sort by
identifying the value

SORTING
•  Non-comparison sorts

•  If we know something about the data, we
don’t strictly need to compare objects to each
other

•  If there are only a few possible values and
we know what they are, we can just sort by
identifying the value

•  If the data are strings and ints of finite length,
then we can take advantage of their sorted
order.

SORTING
•  Two sorting techniques we use to this end

SORTING
•  Two sorting techniques we use to this end

•  Bucket sort

SORTING
•  Two sorting techniques we use to this end

•  Bucket sort
•  Radix sort

SORTING
•  Two sorting techniques we use to this end

•  Bucket sort
•  Radix sort

•  If the data is sufficiently structured, we can
get O(n) runtimes

BUCKETSORT
If all values to be sorted are known to be integers between 1
and K (or any small range):

•  Create an array of size K
•  Put each element in its proper bucket (a.k.a. bin)
•  If data is only integers, no need to store more than a count of

how times that bucket has been used

Output result via linear pass through array of buckets

count array
1 3
2 1
3 2
4 2
5 3

•  Example:
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

ANALYZING BUCKET SORT
Overall: O(n+K)

•  Linear in n, but also linear in K

Good when K is smaller (or not much larger) than n

•  We don’t spend time doing comparisons of duplicates

Bad when K is much larger than n
•  Wasted space; wasted time during linear O(K) pass

For data in addition to integer keys, use list at each
bucket

BUCKET SORT
Most real lists aren’t just keys; we have data
Each bucket is a list (say, linked list)
To add to a bucket, insert in O(1) (at beginning, or keep pointer to
last element)

count array

1

2

3

4

5

•  Example: Movie ratings; scale 1-5
Input:

 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original Trilogy
 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star
Wars
• Easy to keep ‘stable’; Casablanca still before Star Wars

RADIX SORT
Radix = “the base of a number system”

•  Examples will use base 10 because we are used to that
•  In implementations use larger numbers

•  For example, for ASCII strings, might use 128

Idea:

•  Bucket sort on one digit at a time
•  Number of buckets = radix
•  Starting with least significant digit
•  Keeping sort stable

•  Do one pass per digit
•  Invariant: After k passes (digits), the last k digits are

sorted

RADIX SORT EXAMPLE
Radix = 10

Input: 478, 537, 9, 721, 3, 38, 143, 67

3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted
in yellow

4 7 8
5 3 7
0 0 9
7 2 1
0 0 3
0 3 8
1 4 3
0 6 7

7 2 1
0 0 3
1 4 3
5 3 7
0 6 7
4 7 8
0 3 8
0 0 9

0 0 3
0 0 9
7 2 1
5 3 7
0 3 8
1 4 3
0 6 7
4 7 8

0 0 3
0 0 9
0 3 8
0 6 7
1 4 3
4 7 8
5 3 7
7 2 1

ANALYSIS
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not
•  Example: Strings of English letters up to length 15

•  Run-time proportional to: 15*(52 + n)
•  This is less than n log n only if n > 33,000
•  Of course, cross-over point depends on constant factors of the

implementations

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts

•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts

•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting
by comparisons

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts
•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting by
comparisons
Non-comparison sorts

•  Bucket sort good for small number of possible key values
•  Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts
•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting by
comparisons
Non-comparison sorts

•  Bucket sort good for small number of possible key values
•  Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

