
CSE 332
JULY 19TH – SORTING 2

ASSORTED MINUTIAE
•  Exams graded

ASSORTED MINUTIAE
•  Exams graded

•  Should have in hand

ASSORTED MINUTIAE
•  Exams graded

•  Should have in hand
•  Projects graded

ASSORTED MINUTIAE
•  Exams graded

•  Should have in hand
•  Projects graded

•  View feedback on gitlab

ASSORTED MINUTIAE
•  Exams graded

•  Should have in hand
•  Projects graded

•  View feedback on gitlab
•  P2 checkpoint today

ASSORTED MINUTIAE
•  Exams graded

•  Should have in hand
•  Projects graded

•  View feedback on gitlab
•  P2 checkpoint today

•  Also a good opportunity to discuss the edam
with me

ASSORTED MINUTIAE
•  Exams graded

•  Should have in hand
•  Projects graded

•  View feedback on gitlab
•  P2 checkpoint today

•  Also a good opportunity to discuss the edam
with me

•  New exercise out tonight

MIDTERM RECAP
•  Overall, scores were good on this exam

MIDTERM RECAP
•  Overall, scores were good on this exam

•  A couple mistakes in missing the problem

MIDTERM RECAP
•  Overall, scores were good on this exam

•  A couple mistakes in missing the problem
•  Lack of thoroughness in design decision

problem --- no solution for how to
getTopWords()

MIDTERM RECAP
•  Overall, scores were good on this exam

•  A couple mistakes in missing the problem
•  Lack of thoroughness in design decision

problem --- no solution for how to
getTopWords()

•  Available today in office hours for regrades

MIDTERM RECAP
•  Overall, scores were good on this exam

•  A couple mistakes in missing the problem
•  Lack of thoroughness in design decision

problem --- no solution for how to
getTopWords()

•  Available today in office hours for regrades
•  Regrading also available after class Friday

SORTING
•  Problem statement:

•  Collection of Comparable data

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data
•  Motivation?

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data
•  Motivation?

•  Pre-processing v. find times

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data
•  Motivation?

•  Pre-processing v. find times
•  Sorting v. Maintaining sortedness

SORTING
•  Important definitions

SORTING
•  Important definitions

•  In-place:

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

•  Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

•  Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

•  Sorting by first name and then last name
will give you last then first with a stable
sort.

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

•  Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

•  Sorting by first name and then last name
will give you last then first with a stable
sort.

•  The most recent sort will always be the
primary

SORTING
•  Important definitions

•  Interruptable:

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

•  Bogo sort is not a comparison sort

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

•  Bogo sort is not a comparison sort
•  Comparison sorts are Ω(n log n), they cannot do

better than this

SORTING
•  What are the sorts we’ve seen so far?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort:

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, do not replace

with an element that ties.

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, do not replace

with an element that ties.
•  In place?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, do not replace

with an element that ties.
•  In place? Can be, but can also create a separate collection

(if we only want the top 5, for example)

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – what case is this?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case:

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n)

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Same as before, if we maintain sorted order in
case of ties.

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Same as before, if we maintain sorted order in
case of ties.

•  In-place?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of the

array. For each new element, we swap it into the sorted
portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Same as before, if we maintain sorted order in case
of ties.

•  In-place? Can be easily. Since not interruptable, having a
duplicate array is only necessary if you don’t want the original
array to be mutated

IN-PLACE HEAP SORT
•  Treat the initial array as a heap (via buildHeap)
•  When you delete the ith element, put it at arr[n-i]

•  That array location isn’t needed for the heap anymore!

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

put the min at the end of the heap
data

DIVIDE AND CONQUER
Divide-and-conquer is a useful technique for solving many kinds of
problems (not just sorting). It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

algorithm(input) {!
!if (small enough) {!
! !CONQUER, solve, and return input!
!} else {!
! !DIVIDE input into multiple pieces!
! !RECURSE on each piece!
! !COMBINE and return results!
!}!

}!

DIVIDE-AND-CONQUER
SORTING

Two great sorting methods are fundamentally divide-and-conquer

Mergesort:

Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

Quicksort:

Pick a “pivot” element
Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)
Answer is: sorted-less-than....pivot....sorted-greater-than

MERGE SORT

Unsorted

Unsorted Unsorted

Divide: Split array roughly into half

Sorted

Sorted Sorted

Conquer: Return array when length ≤ 1

Combine: Combine two sorted arrays using merge

MERGE SORT:
PSEUDOCODE
Core idea: split array in half, sort each half, merge back
together. If the array has size 0 or 1, just return it unchanged

mergesort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !smallerHalf = sort(input[0, ..., mid]);!
! !largerHalf = sort(input[mid + 1, ...]);!
! !return merge(smallerHalf, largerHalf);!
!}!

}!

MERGE SORT
EXAMPLE

7 2 8 4 5 3 1 6

7 2 8 4

7 2

7 2

8 4

8 4

5 3 1 6

5 3 1 6

5 3 1 6

MERGE SORT
EXAMPLE

62

1 2 3 4 5 6 7 8

2 4 7 8

2 7

7 2

4 8

8 4

1 3 5 6

3 5 1 6

5 3 1 6

MERGE SORT
ANALYSIS

Runtime:
•  subdivide the array in half each time: O(log(n)) recursive calls
•  merge is an O(n) traversal at each level

So, the best and worst case runtime is the same: O(n log(n))

O(log(n))
levels

MERGE SORT
ANALYSIS

Stable?
Yes! If we implement the merge function correctly, merge sort
will be stable.

In-place?
No. Unless you want to give yourself a headache. Merge must
construct a new array to contain the output, so merge sort is not
in-place.

We’re constantly copying and creating new arrays at each
level...

One Solution: (less of a headache than actually implementing
in-place) create a single auxiliary array and swap between
it and the original on each level.

QUICK SORT

5

2 8 4 7 3 1 6

Divide: Split array around a ‘pivot’

5

2 4

3

7

6

8

1

numbers <=
pivot

numbers > pivot

pivo
t

QUICK SORT

Unsorted

<= P > P

Divide: Pick a pivot, partition into
groups

Sorted

<= P > P

Conquer: Return array when length
≤ 1

Combine: Combine sorted partitions and pivot

P

P

QUICK SORT
PSEUDOCODE
Core idea: Pick some item from the array and call it the pivot. Put all
items smaller in the pivot into one group and all items larger in the
other and recursively sort. If the array has size 0 or 1, just return it
unchanged.

quicksort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !pivot = getPivot(input);!
! !smallerHalf = sort(getSmaller(pivot, input));!
! !largerHalf = sort(getBigger(pivot, input));!
! !return smallerHalf + pivot + largerHalf;!
!}!

}!

QUICKSORT

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 81 92
43 65

31

57 26

75 0
S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
Quicksort(S1) and

Quicksort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

QUICKSORT

69

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

8 3

1

6 8 9

DETAILS
Have not yet explained:

DETAILS
Have not yet explained:

How to pick the pivot element

•  Any choice is correct: data will end up sorted
•  But as analysis will show, want the two partitions to be about

equal in size

DETAILS
Have not yet explained:

How to pick the pivot element

•  Any choice is correct: data will end up sorted
•  But as analysis will show, want the two partitions to be about

equal in size

How to implement partitioning
•  In linear time
•  In place

PIVOTS
Best pivot?

•  Median
•  Halve each time

Worst pivot?
•  Greatest/least element
•  Problem of size n - 1
•  O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

POTENTIAL PIVOT
RULES
While sorting arr from lo (inclusive) to hi (exclusive)…

Pick arr[lo] or arr[hi-1]

•  Fast, but worst-case occurs with mostly sorted input

Pick random element in the range
•  Does as well as any technique, but (pseudo)random number

generation can be slow
•  Still probably the most elegant approach

Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
•  Common heuristic that tends to work well

PARTITIONING
Conceptually simple, but hardest part to code up correctly

•  After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):
1.  Swap pivot with arr[lo]
2.  Use two counters i and j, starting at lo+1 and hi-1
3.   while (i < j)

 if (arr[j] > pivot) j--
 else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]

4.  Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

75

EXAMPLE
Step one: pick pivot as median of 3

•  lo = 0, hi = 10

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

•  Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

EXAMPLE
Now partition in place

Move cursors

Swap

Move cursors

Move pivot

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

