
CSE 332 
JULY 17TH  – SORTING  



ASSORTED MINUTIAE 
•  Exams almost finished 



ASSORTED MINUTIAE 
•  Exams almost finished 

•  Scores will be out tomorrow 



ASSORTED MINUTIAE 
•  Exams almost finished 

•  Scores will be out tomorrow 
•  Exams back in class on Wednesday 



ASSORTED MINUTIAE 
•  Exams almost finished 

•  Scores will be out tomorrow 
•  Exams back in class on Wednesday 

•  P2 checkpoint is also on Wednesday 



ASSORTED MINUTIAE 
•  Exams almost finished 

•  Scores will be out tomorrow 
•  Exams back in class on Wednesday 

•  P2 checkpoint is also on Wednesday 
•  Make sure you’ve completed at least the 

ckpt1 tests on gitlab 



SORTING 
•  Problem statement: 



SORTING 
•  Problem statement: 

•  Given some collection of comparable data, 
arrange them into an organized order 



SORTING 
•  Problem statement: 

•  Given some collection of comparable data, 
arrange them into an organized order 

•  Important to note that you may be able to 
“organize” the same data different ways 



SORTING 
•  Why sort at all? 



SORTING 
•  Why sort at all? 

•  Data pre-processing 



SORTING 
•  Why sort at all? 

•  Data pre-processing 
•  If we do the work now, future operations may 

be faster 



SORTING 
•  Why sort at all? 

•  Data pre-processing 
•  If we do the work now, future operations may 

be faster 
•  Unsorted v. Sorted Array, e.g. 



SORTING 
•  Why sort at all? 

•  Data pre-processing 
•  If we do the work now, future operations may 

be faster 
•  Unsorted v. Sorted Array, e.g. 

•  Why not just maintain sortedness as we 
add? 



SORTING 
•  Why sort at all? 

•  Data pre-processing 
•  If we do the work now, future operations may 

be faster 
•  Unsorted v. Sorted Array, e.g. 

•  Why not just maintain sortedness as we 
add? 
•  Most times, if we can, we should 



SORTING 
•  Why sort at all? 

•  Data pre-processing 
•  If we do the work now, future operations may 

be faster 
•  Unsorted v. Sorted Array, e.g. 

•  Why not just maintain sortedness as we 
add? 
•  Most times, if we can, we should 
•  Why would we not be able to? 



SORTING 
•  Maintaining Sortedness v. Sorting 



SORTING 
•  Maintaining Sortedness v. Sorting 

•  Why don’t we maintain sortedness? 



SORTING 
•  Maintaining Sortedness v. Sorting 

•  Why don’t we maintain sortedness? 
•  Data comes in batches 



SORTING 
•  Maintaining Sortedness v. Sorting 

•  Why don’t we maintain sortedness? 
•  Data comes in batches 
•  Multiple “sorted” orders 



SORTING 
•  Maintaining Sortedness v. Sorting 

•  Why don’t we maintain sortedness? 
•  Data comes in batches 
•  Multiple “sorted” orders 
•  Costly to maintain!  



SORTING 
•  Maintaining Sortedness v. Sorting 

•  Why don’t we maintain sortedness? 
•  Data comes in batches 
•  Multiple “sorted” orders 
•  Costly to maintain!  

•  We need to be sure that the effort is worth 
the work 



SORTING 
•  Maintaining Sortedness v. Sorting 

•  Why don’t we maintain sortedness? 
•  Data comes in batches 
•  Multiple “sorted” orders 
•  Costly to maintain!  

•  We need to be sure that the effort is worth 
the work 
•  No free lunch! 



SORTING 
•  Maintaining Sortedness v. Sorting 

•  Why don’t we maintain sortedness? 
•  Data comes in batches 
•  Multiple “sorted” orders 
•  Costly to maintain!  

•  We need to be sure that the effort is worth 
the work 
•  No free lunch! 

•  What does that even mean? 



BOGO SORT 
•  Consider the following sorting algorithm 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted,  
•  if so return the list 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted,  
•  if so return the list 
•  if not, try again 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted,  
•  if so return the list 
•  if not, try again 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted,  
•  if so return the list 
•  if not, try again 

•  What is the problem here? 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted,  
•  if so return the list 
•  if not, try again 

•  What is the problem here? 
•  Runtime!  



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted,  
•  if so return the list 
•  if not, try again 

•  What is the problem here? 
•  Runtime! Average O(n!)! 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted,  
•  if so return the list 
•  if not, try again 

•  What is the problem here? 
•  Runtime! Average O(n!)! 
•  Why is this so bad? 



BOGO SORT 
•  Consider the following sorting algorithm 

•  Shuffle the list into a random order 
•  Check if the list is sorted,  
•  if so return the list 
•  if not, try again 

•  What is the problem here? 
•  Runtime! Average O(n!)! 
•  Why is this so bad? 

•  The computer isn’t thinking, it’s just guess-and-
checking 



SORTING 
•  Guess-and-check 



SORTING 
•  Guess-and-check 

•  Not a bad strategy when nothing else is obvious 



SORTING 
•  Guess-and-check 

•  Not a bad strategy when nothing else is obvious 
•  Breaking RSA 



SORTING 
•  Guess-and-check 

•  Not a bad strategy when nothing else is obvious 
•  Breaking RSA 
•  Greedy-first algorithms 



SORTING 
•  Guess-and-check 

•  Not a bad strategy when nothing else is obvious 
•  Breaking RSA 
•  Greedy-first algorithms 

•  If you don’t have a lot of time, or if the payoff is 
big, or if the chance of success is high, then it 
might be a good strategy 



SORTING 
•  Guess-and-check 

•  Not a bad strategy when nothing else is obvious 
•  Breaking RSA 
•  Greedy-first algorithms 

•  If you don’t have a lot of time, or if the payoff is 
big, or if the chance of success is high, then it 
might be a good strategy 

•  Random/Approximized algs 



SORTING 
•  Why not guess-and-check for sorting? 



SORTING 
•  Why not guess-and-check for sorting? 

•  Not taking advantage of the biggest constraint of 
the problem 



SORTING 
•  Why not guess-and-check for sorting? 

•  Not taking advantage of the biggest constraint of 
the problem 

•  Items must be comparable! 



SORTING 
•  Why not guess-and-check for sorting? 

•  Not taking advantage of the biggest constraint of 
the problem 

•  Items must be comparable! 
•  You should be comparing things! 
•  Looking at two items next to each other tells a lot 

about where they belong in the list, there’s no 
reason not to use this information. 



SORTING 
•  Types of sorts 



SORTING 
•  Types of sorts 

•  Comparison sorts  



SORTING 
•  Types of sorts 

•  Comparison sorts 
•  Bubble sort 



SORTING 
•  Types of sorts 

•  Comparison sorts 
•  Bubble sort 
•  Insertion sort 



SORTING 
•  Types of sorts 

•  Comparison sorts 
•  Bubble sort 
•  Insertion sort 
•  Selection sort  



SORTING 
•  Types of sorts 

•  Comparison sorts 
•  Bubble sort 
•  Insertion sort 
•  Selection sort 
•  Heap sort  



SORTING 
•  Types of sorts 

•  Comparison sorts 
•  Bubble sort 
•  Insertion sort 
•  Selection sort 
•  Heap sort  

•  “Other” sorts 
•  Bucket sort – will talk about later 



SORTING 
•  Types of sorts 

•  Comparison sorts 
•  Bubble sort 
•  Insertion sort 
•  Selection sort 
•  Heap sort  

•  “Other” sorts 
•  Bucket sort – will talk about later 
•  Bogo sort  



DEFINITION: 
COMPARISON SORT 

A computational problem with the following input and output 
Input: 
 An array A of length n comparable elements 
 

Output: 
The same array A, containing the same elements where: 

 for any i and j where 0 ≤ i < j < n      
  then A[i] ≤ A[j] 



MORE REASONS TO 
SORT 

General technique in computing:  
 Preprocess data to make subsequent operations faster 

 

Example: Sort the data so that you can 

•  Find the kth largest in constant time for any k 
•  Perform binary search to find elements in logarithmic time 

Whether the performance of the preprocessing matters depends 
on 

•  How often the data will change (and how much it will change) 
•  How much data there is 



MORE DEFINITIONS 
In-Place Sort: 

A sorting algorithm is in-place if it requires only O(1) extra 
space to sort the array. 

• Usually modifies input array 
• Can be useful: lets us minimize memory 

Stable Sort: 
A sorting algorithm is stable if any equal items remain in the 
same relative order before and after the sort. 

•  Items that ’compare’ the same might not be exact duplicates 
• Might want to sort on some, but not all attributes of an item 
• Can be useful to sort on one attribute first, then another one 



STABLE SORT EXAMPLE 
Input: 

[(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")]!

Compare function: compare pairs by number only 
 

Output (stable sort): 
[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")]!

 
Output (unstable sort): 

[(4, "wolf"), (8, "cow"), (8, "fox"), (9, "dog")]!



SORTING: THE BIG 
PICTURE 

Simple	
  
algorithms:	
  

O(n2)	
  

Fancier	
  
algorithms:	
  
O(n	
  log	
  n)	
  

Comparison	
  
lower	
  bound:	
  
Ω(n	
  log	
  n)	
  

Specialized	
  
algorithms:	
  

O(n)	
  

Inser>on	
  sort	
  
Selec>on	
  sort	
  
Shell	
  sort	
  
… 

Heap	
  sort	
  
Merge	
  sort	
  
Quick	
  sort	
  (avg)	
  
…	
  

Bucket	
  sort	
  
Radix	
  sort	
  



INSERTION SORT 

2 4 5 3 8 7 1 6 

already 
sorted 

 
unsorted 

current item 

2 4 5 3 8 7 1 6 

already 
sorted 

 
unsorted 

2 3 4 5 8 7 1 6 

already 
sorted 

 
unsorted 

2 3 4 5 8 7 1 6 

already 
sorted 

 
unsorted 

insert where it belongs in 
sorted section 

shift other elements over and 
already sorted section is now larger 

new current item 

1 2 

3 4 



INSERTION SORT 
Idea: At step k, put the kth element in the correct position among the first k 
elements 
!

for (int i = 0; i < n; i++) {!
! !// Find index to insert into!
! !int newIndex = findPlace(i);!
! !// Insert and shift nodes over!
! !shift(newIndex, i);!
}!

What can we say about the list at loop i? first i elements are sorted 
 (not necessarily lowest in the list) 
 
Runtime? 
 

60 



INSERTION SORT 
Idea: At step k, put the kth element in the correct position among the first k 
elements 
!

for (int i = 0; i < n; i++) {!
! !// Find index to insert into!
! !int newIndex = findPlace(i);!
! !// Insert and shift nodes over!
! !shift(newIndex, i);!
}!

What can we say about the list at loop i? first i elements are sorted 
 (not necessarily lowest in the list) 
 
Runtime? Best case: O(n), Worst case: O(n2) Why? 
 

61 



INSERTION SORT 
Idea: At step k, put the kth element in the correct position among the first k 
elements 
!

for (int i = 0; i < n; i++) {!
! !// Find index to insert into!
! !int newIndex = findPlace(i);!
! !// Insert and shift nodes over!
! !shift(newIndex, i);!
}!

What can we say about the list at loop i? first i elements are sorted 
 (not necessarily lowest in the list) 
 
Runtime? Best case: O(n), Worst case: O(n2) Why? 
Stable?    In-place? 
 



INSERTION SORT 
Idea: At step k, put the kth element in the correct position among the first k 
elements 
!

for (int i = 0; i < n; i++) {!
! !// Find index to insert into!
! !int newIndex = findPlace(i);!
! !// Insert and shift nodes over!
! !shift(newIndex, i);!
}!

What can we say about the list at loop i? first i elements are sorted 
 (not necessarily lowest in the list) 
 
Runtime? Best case: O(n), Worst case: O(n2) Why? 
Stable?  Usually   In-place? Yes 
 



SELECTION SORT 

1 2 3 7 8 6 4 5 

already 
sorted 

 
unsorted 

current index 

1 2 3 4 8 6 7 5 

already 
sorted 

 
unsorted 

1 2 3 4 8 6 7 5 

already 
sorted 

 
unsorted 

now ‘already sorted’ section is one 
larger 

next 
index 

1 2 

3 4 

next smallest 

1 2 3 7 8 6 4 

already 
sorted 

 
unsorted 

5 

current index next smallest 

swap 

next smallest 



SELECTION SORT 
•  Can be interrupted (don’t need to sort the whole 

array to get the first element) 
•  Doesn’t need to mutate the original array (if the 

array has some other sorted order) 
•  Stable sort 



INSERTION SORT VS. 
SELECTION SORT 
Have the same worst-case and average-case asymptotic 
complexity 

•  Insertion-sort has better best-case complexity; preferable 
when input is “mostly sorted” 

Useful for small arrays or for mostly sorted input 



SORTING 
•  Important definitions 



SORTING 
•  Important definitions 

•  In-place: 



SORTING 
•  Important definitions 

•  In-place: Requires only O(1) extra memory 



SORTING 
•  Important definitions 

•  In-place: Requires only O(1) extra memory 
•  usually means the array is mutated 



SORTING 
•  Important definitions 

•  In-place: Requires only O(1) extra memory 
•  usually means the array is mutated 

•  Stable: For any two elements have the same 
comparative value, then after the sort, which 
ever came first will stay first 



SORTING 
•  Important definitions 

•  In-place: Requires only O(1) extra memory 
•  usually means the array is mutated 

•  Stable: For any two elements have the same 
comparative value, then after the sort, which 
ever came first will stay first 

•  Sorting by first name and then last name 
will give you last then first with a stable 
sort. 



SORTING 
•  Important definitions 

•  In-place: Requires only O(1) extra memory 
•  usually means the array is mutated 

•  Stable: For any two elements have the same 
comparative value, then after the sort, which 
ever came first will stay first 

•  Sorting by first name and then last name 
will give you last then first with a stable 
sort. 

•  The most recent sort will always be the 
primary 



SORTING 
•  Important definitions 

•  Interruptable: 



SORTING 
•  Important definitions 

•  Interruptable: the algorithm can run only until 
the first k elements are in sorted order 



SORTING 
•  Important definitions 

•  Interruptable: the algorithm can run only until 
the first k elements are in sorted order 

•  Comparison sort: utilizes comparisons 
between elements to produce the final sorted 
order. 



SORTING 
•  Important definitions 

•  Interruptable: the algorithm can run only until 
the first k elements are in sorted order 

•  Comparison sort: utilizes comparisons 
between elements to produce the final sorted 
order. 

•  Bogo sort is not a comparison sort 



SORTING 
•  Important definitions 

•  Interruptable: the algorithm can run only until 
the first k elements are in sorted order 

•  Comparison sort: utilizes comparisons 
between elements to produce the final sorted 
order. 

•  Bogo sort is not a comparison sort 
•  Comparison sorts are Ω(n log n), they cannot do 

better than this 



SORTING 
•  What other sorting techniques can we 

consider? 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 
•  Removing the smallest element from the array takes  

O(log n) 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 
•  Removing the smallest element from the array takes  

O(log n) 
•  There are n elements. 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 
•  Removing the smallest element from the array takes  

O(log n) 
•  There are n elements. 
•  N + N*log N = O(N log N) 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 
•  Removing the smallest element from the array takes  

O(log n) 
•  There are n elements. 
•  N + N*log N = O(N log N) 
•  Using Floyd’s method does not improve the asymptotic 

runtime for heap sort, but it is an improvement. 



HEAP SORT 
•  How do we actually implement this sort? 

•  Can we do it in place? 



HEAP SORT 
•  How do we actually implement this sort? 

•  Can we do it in place? 



IN-PLACE HEAP SORT 
•  Treat the initial array as a heap (via buildHeap) 
•  When you delete the ith  element, put it at arr[n-i] 

•  That array location isn’t needed for the heap anymore! 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 
deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

put the min at the end of the heap 
data 



HEAP SORT 
•  How do we actually implement this sort? 

•  Can we do it in place? 
•  Is this sort stable? 



HEAP SORT 
•  How do we actually implement this sort? 

•  Can we do it in place? 
•  Is this sort stable? 

•  No. Recall that heaps do not preserve FIFO 
property 



HEAP SORT 
•  How do we actually implement this sort? 

•  Can we do it in place? 
•  Is this sort stable? 

•  No. Recall that heaps do not preserve FIFO 
property 

•  If it needed to be stable, we would have to 
modify the priority to indicate its place in the 
array, so that each element has a unique 
priority. 



IN-PLACE HEAP SORT 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 
deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

put the min at the end of the heap 
data 

What is undesirable about this method? 



IN-PLACE HEAP SORT 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 
deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

put the min at the end of the heap 
data 

What is undesirable about this method? 
 You must reverse the array at the end. 



HEAP SORT 
•  Can implement with a max-heap, then the 

sorted portion of the array fills in from the 
back and doesn’t need to be reversed at the 
end. 



“AVL SORT”?  “HASH SORT”? 
AVL Tree: sure, we can also use an AVL tree to: 
 



“AVL SORT”?  “HASH SORT”? 
AVL Tree: sure, we can also use an AVL tree to: 

•  insert each element: total time O(n log n) 
•  Repeatedly deleteMin: total time O(n log n) 

•  Better: in-order traversal O(n), but still O(n log n) overall 
•  But this cannot be done in-place and has worse constant 

factors than heap sort 
 



“AVL SORT”?  “HASH SORT”? 
AVL Tree: sure, we can also use an AVL tree to: 

•  insert each element: total time O(n log n) 
•  Repeatedly deleteMin: total time O(n log n) 

•  Better: in-order traversal O(n), but still O(n log n) overall 
•  But this cannot be done in-place and has worse constant 

factors than heap sort 
 

Hash Structure: don’t even think about trying to sort with a 
hash table! 
 



“AVL SORT”?  “HASH SORT”? 
AVL Tree: sure, we can also use an AVL tree to: 

•  insert each element: total time O(n log n) 
•  Repeatedly deleteMin: total time O(n log n) 

•  Better: in-order traversal O(n), but still O(n log n) overall 
•  But this cannot be done in-place and has worse constant 

factors than heap sort 
 

Hash Structure: don’t even think about trying to sort with a 
hash table! 

•  Finding min item in a hashtable is O(n), so this would be a 
slower, more complicated selection sort 

 



DIVIDE AND CONQUER 
Divide-and-conquer is a useful technique for solving many kinds of 
problems (not just sorting). It consists of the following steps: 

1. Divide your work up into smaller pieces (recursively) 
2. Conquer the individual pieces (as base cases) 
3. Combine the results together (recursively) 

algorithm(input) {!
!if (small enough) {!
! !CONQUER, solve, and return input!
!} else {!
! !DIVIDE input into multiple pieces!
! !RECURSE on each piece!
! !COMBINE and return results!
!}!

}!



DIVIDE-AND-CONQUER 
SORTING 

Two great sorting methods are fundamentally divide-and-conquer 
 
Mergesort:      

Sort the left half of the elements (recursively) 
Sort the right half of the elements (recursively) 
Merge the two sorted halves into a sorted whole 

 
Quicksort:     

Pick a “pivot” element  
Divide elements into less-than pivot and greater-than pivot 
Sort the two divisions (recursively on each) 
Answer is: sorted-less-than....pivot....sorted-greater-than 

     
 



MERGE SORT 

Unsorted 

Unsorted Unsorted 

Divide: Split array roughly into half 

Sorted 

Sorted Sorted 

Conquer: Return array when length ≤ 1 

Combine: Combine two sorted arrays using merge 



MERGE SORT: 
PSEUDOCODE 
Core idea: split array in half, sort each half, merge back 
together. If the array has size 0 or 1, just return it unchanged 

mergesort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !smallerHalf = sort(input[0, ..., mid]);!
! !largerHalf = sort(input[mid + 1, ...]);!
! !return merge(smallerHalf, largerHalf);!
!}!

}!



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

First half after sort: Second half after sort: 

Result: 



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 

First half after sort: Second half after sort: 

Result: 



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 2 

First half after sort: Second half after sort: 

Result: 



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 2 3 

First half after sort: Second half after sort: 

Result: 



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 2 3 4 

First half after sort: Second half after sort: 

Result: 



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 2 3 4 5 

First half after sort: Second half after sort: 

Result: 



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 2 3 4 5 6 

First half after sort: Second half after sort: 

Result: 



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 2 3 4 5 6 7 

First half after sort: Second half after sort: 

Result: 



MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 2 3 4 5 6 7 8 

First half after sort: Second half after sort: 

Result: 

After Merge: copy result into original unsorted array.   
Or alternate merging between two size n arrays. 



MERGE SORT 
EXAMPLE 

7 2 8 4 5 3 1 6 

7 2 8 4 

7 2 

7 2 

8 4 

8 4 

5 3 1 6 

5 3 1 6 

5 3 1 6 



MERGE SORT 
EXAMPLE 

114 

1 2 3 4 5 6 7 8 

2 4 7 8 

2 7 

7 2 

4 8 

8 4 

1 3 5 6 

3 5 1 6 

5 3 1 6 



MERGE SORT 
ANALYSIS 

Runtime: 
•  subdivide the array in half each time: O(log(n)) recursive calls 
•  merge is an O(n) traversal at each level  

So, the best and worst case runtime is the same: O(n log(n)) 

O(log(n)) 
levels 



MERGE SORT 
ANALYSIS 

Stable? 
Yes!  If we implement the merge function correctly, merge sort 
will be stable. 

In-place? 
No.  Unless you want to give yourself a headache.  Merge must 
construct a new array to contain the output, so merge sort is not 
in-place. 

 
We’re constantly copying and creating new arrays at each 
level... 
 
One Solution: (less of a headache than actually implementing 
in-place) create a single auxiliary array and swap between 
it and the original on each level. 


