CSE 332

JULY 17TH — SORTING

ASSORTED MINUTIAE

« Exams almost finished

ASSORTED MINUTIAE

« Exams almost finished

 Scores will be out tomorrow

ASSORTED MINUTIAE

« Exams almost finished

* Scores will be out tomorrow
* Exams back in class on Wednesday

ASSORTED MINUTIAE

« Exams almost finished

* Scores will be out tomorrow
* Exams back in class on Wednesday
P2 checkpoint is also on Wednesday

ASSORTED MINUTIAE

« Exams almost finished

* Scores will be out tomorrow
* Exams back in class on Wednesday
P2 checkpoint is also on Wednesday

- Make sure you've completed at least the
ckpt1 tests on gitlab

SORTING

 Problem statement:

SORTING

 Problem statement:

« Given some collection of comparable data,
arrange them into an organized order

SORTING

* Problem statement:
« Given some collection of comparable data,
arrange them into an organized order

* Important to note that you may be able to
“‘organize” the same data different ways

SORTING

« Why sort at all?

SORTING

« Why sort at all?

- Data pre-processing

SORTING

« Why sort at all?

- Data pre-processing

- If we do the work now, future operations may
be faster

SORTING

« Why sort at all?

- Data pre-processing

 |If we do the work now, future operations may
be faster

* Unsorted v. Sorted Array, e.g.

SORTING

« Why sort at all?

- Data pre-processing

 |If we do the work now, future operations may
be faster

* Unsorted v. Sorted Array, e.g.

* Why not just maintain sortedness as we
add?

SORTING

« Why sort at all?

- Data pre-processing

 |If we do the work now, future operations may
be faster

* Unsorted v. Sorted Array, e.g.
* Why not just maintain sortedness as we
add?

 Most times, if we can, we should

SORTING

« Why sort at all?

- Data pre-processing

 |If we do the work now, future operations may
be faster

* Unsorted v. Sorted Array, e.g.
* Why not just maintain sortedness as we
add?
* Most times, if we can, we should
* Why would we not be able to?

SORTING

« Maintaining Sortedness v. Sorting

SORTING

« Maintaining Sortedness v. Sorting

* Why don’t we maintain sortedness?

SORTING

« Maintaining Sortedness v. Sorting

* Why don’t we maintain sortedness?
« Data comes in batches

SORTING

* Maintaining Sortedness v. Sorting

* Why don’t we maintain sortedness?
- Data comes in batches
* Multiple “sorted” orders

SORTING

* Maintaining Sortedness v. Sorting

* Why don’t we maintain sortedness?
- Data comes in batches
* Multiple “sorted” orders
» Costly to maintain!

SORTING

* Maintaining Sortedness v. Sorting

* Why don’t we maintain sortedness?
- Data comes in batches
* Multiple “sorted” orders
» Costly to maintain!

« We need to be sure that the effort is worth
the work

SORTING

* Maintaining Sortedness v. Sorting

* Why don’t we maintain sortedness?
- Data comes in batches
* Multiple “sorted” orders
» Costly to maintain!

« We need to be sure that the effort is worth
the work

* No free lunch!

SORTING

* Maintaining Sortedness v. Sorting

* Why don’t we maintain sortedness?
- Data comes in batches
* Multiple “sorted” orders
» Costly to maintain!

« We need to be sure that the effort is worth
the work

* No free lunch!
« What does that even mean?

BOGO SORT

« Consider the following sorting algorithm

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order
 Check if the list is sorted

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order
* Check if the list is sorted,
* if so return the list

BOGO SORT

« Consider the following sorting algorithm

» Shuffle the list into a random order
* Check if the list is sorted,

 if so return the list

* if not, try again

BOGO SORT

« Consider the following sorting algorithm

» Shuffle the list into a random order
* Check if the list is sorted,

 if so return the list

* if not, try again

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order
« Check if the list is sorted,
 if so return the list
* if not, try again
« What is the problem here?

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order
« Check if the list is sorted,
 if so return the list
* if not, try again
« What is the problem here?

 Runtime!

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order
« Check if the list is sorted,
 if so return the list
* if not, try again
« What is the problem here?

* Runtime! Average O(n!)!

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order
« Check if the list is sorted,
 if so return the list
* if not, try again
« What is the problem here?

* Runtime! Average O(n!)!
* Why is this so bad?

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order
* Check if the list is sorted,
* if so return the list
* if not, try again
« What is the problem here?
* Runtime! Average O(n!)!
* Why is this so bad?

 The computer isn’t thinking, it’s just guess-and-
checking

SORTING

« Guess-and-check

SORTING

« Guess-and-check

* Not a bad strategy when nothing else is obvious

SORTING

« Guess-and-check

* Not a bad strategy when nothing else is obvious
* Breaking RSA

SORTING

« Guess-and-check

* Not a bad strategy when nothing else is obvious
* Breaking RSA
« Greedy-first algorithms

SORTING

« Guess-and-check

* Not a bad strategy when nothing else is obvious
* Breaking RSA
« Greedy-first algorithms

 If you don’t have a lot of time, or if the payoff is

big, or if the chance of success is high, then it
might be a good strategy

SORTING

« Guess-and-check

* Not a bad strategy when nothing else is obvious
* Breaking RSA
« Greedy-first algorithms

 If you don’t have a lot of time, or if the payoff is
big, or if the chance of success is high, then it

might be a good strategy
- Random/Approximized algs

SORTING

 Why not guess-and-check for sorting?

SORTING

 Why not guess-and-check for sorting?

* Not taking advantage of the biggest constraint of
the problem

SORTING

 Why not guess-and-check for sorting?

* Not taking advantage of the biggest constraint of
the problem

* |tems must be comparable!

SORTING

 Why not guess-and-check for sorting?

Not taking advantage of the biggest constraint of
the problem

Items must be comparable!
You should be comparing things!

Looking at two items next to each other tells a lot
about where they belong in the list, there’s no
reason not to use this information.

SORTING

+ Types of sorts

SORTING

+ Types of sorts
« Comparison sorts

SORTING

+ Types of sorts

« Comparison sorts
* Bubble sort

SORTING

+ Types of sorts

« Comparison sorts
* Bubble sort
* |nsertion sort

SORTING

+ Types of sorts

« Comparison sorts
* Bubble sort
* |nsertion sort
« Selection sort

SORTING

+ Types of sorts

« Comparison sorts
* Bubble sort
* |nsertion sort
« Selection sort
* Heap sort

SORTING

+ Types of sorts

« Comparison sorts
* Bubble sort
* |nsertion sort
« Selection sort
* Heap sort

« “Other” sorts

 Bucket sort — will talk about later

SORTING

+ Types of sorts

« Comparison sorts
* Bubble sort
* |nsertion sort
« Selection sort
* Heap sort
« “Other” sorts
» Bucket sort — will talk about later
* Bogo sort

DEFINITION:
COMPARISON SORT

A computational problem with the following input and output
Input:

An array A of length n comparable elements

Output:
The same array A, containing the same elements where:

foranyiand jwhere0< i < § < n
thenA[i] = A[j]

MORE REASONS TO
SORT

General technique in computing:

Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

* Find the k! largest in constant time for any k
* Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends
on

* How often the data will change (and how much it will change)
* How much data there is

MORE DEFINITIONS
In-Place Sort:

A sorting algorithm is in-place if it requires only O(1) extra
space to sort the array.

» Usually modifies input array

» Can be useful: lets us minimize memory

Stable Sort:

A sorting algorithm is stable if any equal items remain in the
same relative order before and after the sort.

* Iltems that 'compare’ the same might not be exact duplicates
* Might want to sort on some, but not all attributes of an item
« Can be useful to sort on one attribute first, then another one

STABLE SORT EXAMPLE
Input:

[(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")]
Compare function: compare pairs by number only

Output (stable sort):
[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")]

Output (sort):
[(4, "wolf") , (8, "fox"), (9, "dog")]

SORTING: THE BIG
PICTURE

Fancier Comparison
algorithms: lower bound:
O(n log n) Q(n log n)
Insertion sort Heap sort
Selection sort Merge sort

Quick sort (avg)

Specialized
algorithms:
O(n)

Bucket sort
Radix sort

INSERTION SORT

current item

‘_L\

insert where it belongs in
sorted section

N

| J \

! |

\ J L

I Y

already already
sorted unsorted sorted unsorted
shift other elements over and new current item
already sorted section is now larger =
l ']\ ' \ Y J | v
already already
sorted unsorted

sorted unsorted

INSERTION SORT

Idea: At step k, put the kt" element in the correct position among the first k
elements

for (int i = 0; 1 < n; i++) {
int newIndex = findPlace(1i);

shift(newIndex, 1i);

What can we say about the list at loop i? first i elements are sorted
(not necessarily lowest in the list)

Runtime?

60

INSERTION SORT

Idea: At step k, put the kt" element in the correct position among the first k
elements

for (int i = 0; 1 < n; i++) {
int newIndex = findPlace(1i);

shift(newIndex, 1i);

What can we say about the list at loop i? first i elements are sorted
(not necessarily lowest in the list)

Runtime? Best case: O(n), Worst case: O(n?) Why?

61

INSERTION SORT

Idea: At step k, put the kt" element in the correct position among the first k
elements

for (int i = 0; 1 < n; i++) {
int newIndex = findPlace(1i);

shift(newIndex, 1i);

What can we say about the list at loop i? first i elements are sorted
(not necessarily lowest in the list)

Runtime? Best case: O(n), Worst case: O(n?) Why?
Stable? In-place?

INSERTION SORT

Idea: At step k, put the kt" element in the correct position among the first k
elements

for (int i = 0; 1 < n; i++) {
int newIndex = findPlace(1i);

shift(newIndex, 1i);

What can we say about the list at loop i? first i elements are sorted
(not necessarily lowest in the list)

Runtime? Best case: O(n), Worst case: O(n?) Why?
Stable? Usually In-place? Yes

SELECTION SORT swap

| N

currentindex next smallest currentindex next smalles

L i

\) \ J |\
! l Y / ! Y

already already
sorted unsorted sorted unsorted
3 t 4
nex
now ‘already sorted’ section is one index next 3”{‘3'_'\
larger
7 |5
\ Y J \ i) | T 7\ Y
already already
sorted unsorted

sorted unsorted

SELECTION SORT

« Can be interrupted (don’t need to sort the whole
array to get the first element)

 Doesn’t need to mutate the original array (if the
array has some other sorted order)

 Stable sort

INSERTION SORT VS.
SELECTION SORT

Have the same worst-case and average-case asymptotic
complexity

* Insertion-sort has better best-case complexity; preferable
when input is “mostly sorted”

Useful for small arrays or for mostly sorted input

SORTING

* Important definitions

SORTING

* Important definitions

* In-place:

SORTING

* Important definitions

* In-place: Requires only O(1) extra memory

SORTING

* Important definitions

* In-place: Requires only O(1) extra memory
» usually means the array is mutated

SORTING

* Important definitions

* In-place: Requires only O(1) extra memory
» usually means the array is mutated

« Stable: For any two elements have the same
comparative value, then after the sort, which

ever came first will stay first

SORTING

* Important definitions

* In-place: Requires only O(1) extra memory
» usually means the array is mutated
« Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

« Sorting by first name and then last name
will give you last then first with a stable

sort.

SORTING

* Important definitions

* In-place: Requires only O(1) extra memory
» usually means the array is mutated

« Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

« Sorting by first name and then last name

will give you last then first with a stable
sort.

» The most recent sort will always be the
primary

SORTING

* Important definitions

* |nterruptable:

SORTING

* Important definitions

* Interruptable: the algorithm can run only until
the first k elements are in sorted order

SORTING

* Important definitions
* Interruptable: the algorithm can run only until
the first k elements are in sorted order

« Comparison sort: utilizes comparisons
between elements to produce the final sorted

order.

SORTING

* Important definitions

* Interruptable: the algorithm can run only until
the first k elements are in sorted order

« Comparison sort: utilizes comparisons
between elements to produce the final sorted

order.
» Bogo sort is not a comparison sort

SORTING

* Important definitions

* Interruptable: the algorithm can run only until
the first k elements are in sorted order

« Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

» Bogo sort is not a comparison sort

« Comparison sorts are Q(n log n), they cannot do
better than this

SORTING

 What other sorting techniques can we
consider?

SORTING

 What other sorting techniques can we
consider?

* We know O(n log n) is possible. How do we do it?

SORTING

 What other sorting techniques can we
consider?

* We know O(n log n) is possible. How do we do it?
« Heap sort works on principles we already know.

SORTING

 What other sorting techniques can we
consider?

* We know O(n log n) is possible. How do we do it?

« Heap sort works on principles we already know.
Building a heap from an array takes O(n) time

SORTING

 What other sorting techniques can we
consider?

* We know O(n log n) is possible. How do we do it?

« Heap sort works on principles we already know.
Building a heap from an array takes O(n) time

Removing the smallest element from the array takes
O(log n)

SORTING

 What other sorting techniques can we
consider?

* We know O(n log n) is possible. How do we do it?

« Heap sort works on principles we already know.
Building a heap from an array takes O(n) time
Removing the smallest element from the array takes
O(log n)

There are n elements.

SORTING

 What other sorting techniques can we
consider?

* We know O(n log n) is possible. How do we do it?

« Heap sort works on principles we already know.
Building a heap from an array takes O(n) time
Removing the smallest element from the array takes
O(log n)

There are n elements.
N + N*log N = O(N log N)

SORTING

 What other sorting techniques can we
consider?

* We know O(n log n) is possible. How do we do it?
« Heap sort works on principles we already know.

Building a heap from an array takes O(n) time
Removing the smallest element from the array takes
O(log n)

There are n elements.

N + N*log N = O(N log N)

Using Floyd’'s method does not improve the asymptotic
runtime for heap sort, but it is an improvement.

HEAP SORT

 How do we actually implement this sort?

« Canwe doitin place?

HEAP SORT

 How do we actually implement this sort?

« Canwe doitin place?

IN-PLACE HEAP SORT

* Treat the initial array as a heap (via buildHeap)

« When you delete the i!" element, put it at arr[n-i]
« That array location isn’'t needed for the heap anymore!

4 17|

5] 9]] 6 [0o[3]2]7]

J\)

[[

l heap part ‘ sorted part

put the min at the end of the heap

data

5 |76 9| 8] 104]3]| 2]

-

)

arr[n-1i]=
deleteMin ()

] \
Y
heaL part sorted part

HEAP SORT

 How do we actually implement this sort?
« Canwe doitin place?
* Is this sort stable?

HEAP SORT

 How do we actually implement this sort?
« Canwe doitin place?
* Is this sort stable?

* No. Recall that heaps do not preserve FIFO
property

HEAP SORT

 How do we actually implement this sort?
« Canwe doitin place?
* Is this sort stable?

* No. Recall that heaps do not preserve FIFO
property

* If it needed to be stable, we would have to
modify the priority to indicate its place in the
array, so that each element has a unique
priority.

IN-PLACE HEAP SORT

What is undesirable about this method?

s 75 9] 8610 3]2]1]

J\)

[[

l heap part ‘ sorted part

put the min at the end of the heap

data

)

arr[n-1i]=
deleteMin ()

5 |76 9| 8] 104]3]| 2]

\

)

] \
Y
hea!) part sorted part

IN-PLACE HEAP SORT

What is undesirable about this method?

You must reverse the array at the end.

4 17|

5] 9]] 6 [0o[3]2]7]

J\)

[[

l heap part ‘ sorted part

put the min at the end of the heap

data

5 |76 9| 8] 104]3]| 2]

-

)

arr[n-1i]=
deleteMin ()

] \
Y
heaE) part sorted part

HEAP SORT

« Can implement with a max-heap, then the
sorted portion of the array fills in from the
back and doesn’t need to be reversed at the
end.

“AVL SORT”? “HASH SORT”?

AVL Tree: sure, we can also use an AVL tree to:

“AVL SORT”? “HASH SORT”?

AVL Tree: sure, we can also use an AVL tree to:

* insert each element: total time O(n 1og n)
* Repeatedly deleteMin: total time O(n log n)
« Better: in-order traversal O(n), but still O(n 1og n) overall

 But this cannot be done in-place and has worse constant
factors than heap sort

“AVL SORT”? “HASH SORT”?

AVL Tree: sure, we can also use an AVL tree to:

* insert each element: total time O(n 1og n)
* Repeatedly deleteMin: total time O(n log n)
« Better: in-order traversal O(n), but still O(n 1og n) overall

 But this cannot be done in-place and has worse constant
factors than heap sort

Hash Structure: don’t even think about trying to sort with a
hash table!

“AVL SORT”? “HASH SORT”?

AVL Tree: sure, we can also use an AVL tree to:

* insert each element: total time O(n 1og n)
* Repeatedly deleteMin: total time O(n log n)
« Better: in-order traversal O(n), but still O(n 1og n) overall

 But this cannot be done in-place and has worse constant
factors than heap sort

Hash Structure: don’t even think about trying to sort with a
hash table!

* Finding min item in a hashtable is O(n), so this would be a
slower, more complicated selection sort

DIVIDE AND CONQUER

Divide-and-conquer is a useful technique for solving many kinds of
problems (not just sorting). It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

algorithm(input) {
if (small enough) {
, solve, and return input

} else {
input into multiple pieces
on each piece
and return results
}

DIVIDE-AND-CONQUER
SORTING

Two great sorting methods are fundamentally divide-and-conquer

Mergesort:

Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

Quicksort:

Pick a “pivot” element

Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)

Answer is: sorted-less-than....pivot....sorted-greater-than

MERGE SORT

Divide: Split array roughly into half

Unsorted

N

Unsorted Unsorted

Conquer: Return array when length < 1

|

Combine: Combine two sorted arrays using merge

Sorted Sorted

~

Sorted

MERGE SORT:
PSEUDOCODE

Core idea: split array in half, sort each half, merge back
together. If the array has size 0 or 1, just return it unchanged

mergesort (input) {
if (input.length < 2) {
return input;

} else {
smallerHalf = sort(input[0, ..., mid]);
largerHalf = sort(input[mid + 1, ...]);

return merge(smallerHalf, largerHalf);

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:
2 4 7 8 13 5 6
Result:

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:
2 4 7 8 13 5 6

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:
2 4 7 8 13 5 6

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:
2 4 7 8 13 5 6

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:
2 4 7 8 13 5 6

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:

/
5 6
/

/

Result: 1] P2 3 4

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:
2 4 7 8 13 5 6
5 6 [

Result: 1] P2 3 4

MERGE EXAMPLE

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:
2 4 7 8 13 5 6
5 6 8

Result: 1] P2 3 4

After Merge: copy result into original unsorted array.
Or alternate merging between two size n arrays.

MERGE SORT
EXAMPLE

/ N\
PN N
/N /N /N N\

MERGE SORT
EXAMPLE
1 2

MERGE SORT
ANALYSIS

Runtime:

merge is an O(n) traversal at each level

812|194 |5|3|1]6

Divide

. 82 9 4 5316
Divide e g e
L 82 9 4 53 16
1vidae / \ \ % \ / \
Lelement 8 2 0" 4 5 3 o
ad S 4 B
MeEE o % 479 35 16
T

Merge 123456809

subdivide the array in half each time: O(log(n)) recursive calls

So, the best and worst case runtime is the same: O(n log(n))

= O(log(n))
levels

MERGE SORT
ANALYSIS

Stable?

Yes! If we implement the merge function correctly, merge sort
will be stable.

In-place?

No. Unless you want to give yourself a headache. Merge must

construct a new array to contain the output, so merge sort is not
in-place.

We’re constantly copying and creating new arrays at each
level...

One Solution: (less of a headache than actually implementing
in-place) create a single auxiliary array and swap between

it and the original on each level.

