
CSE 332
JUNE 23RD – PRIORITY QUEUES AND

 THE HEAP

TODAY’S LECTURE
•  Priority Queue ADT
•  Heap DS

•  Heap Property
•  Completeness property

•  Implementation

REVIEW FROM LAST WEEK
•  Priority Queue

REVIEW FROM LAST WEEK
•  Priority Queue

•  Data enqueued with a priority

REVIEW FROM LAST WEEK
•  Priority Queue

•  Data enqueued with a priority
•  Lower priority data dequeue first

REVIEW FROM LAST WEEK
•  Priority Queue

•  Data enqueued with a priority
•  Lower priority data dequeue first
•  Maintain queue principle?

REVIEW FROM LAST WEEK
•  Priority Queue

•  Data enqueued with a priority
•  Lower priority data dequeue first
•  Maintain queue principle?

•  Implementations?

REVIEW FROM LAST WEEK
•  Priority Queue

•  Data enqueued with a priority
•  Lower priority data dequeue first
•  Maintain queue principle?

•  Implementations?
•  Array and Linked List both have serious

flaws.

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children
•  How to implement?
•  Insert and delete are different than BST

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children
•  How to implement?
•  Insert and delete are different than BST

COMPLETENESS

COMPLETENESS

Filling left to right and top to bottom is
another property - completeness

HEAPS
•  Heap property (parents < children)
•  Complete tree property (left to right,

bottom to top)
•  How does this help?

HEAPS
•  Heap property (parents < children)
•  Complete tree property (left to right,

bottom to top)
•  How does this help?

•  Array implementation

HEAPS

0 1 2 3 4

•  Insert into array from left to right
•  For any parent at index i,

 children at 2*i+1 and 2*i+2

HEAPS
•  How to maintain heap property then?

HEAPS
•  How to maintain heap property then?

•  Parent must be higher priority than
children

HEAPS
•  How to maintain heap property then?

•  Parent must be higher priority than
children

•  Two functions – percolate up and
percolate down

SWAPPING IN THE HEAP
•  Percolate up

•  When a new item is inserted:
•  Place the item at the next position to

preserve completeness
•  Swap the item up the tree until it is larger

than its parent

SWAPPING IN THE HEAP
•  Percolate down

•  When an item is deleted:
•  Remove the root of the tree (to be returned)
•  Move the last object in the tree to the root
•  Swap the moved piece down while it is

larger than it’s smallest child
•  Only swap with the smallest child

HEAPS AS ARRAYS
•  Because heaps are complete, they can be

represented as arrays without any gaps
in them.

•  Naïve implementation:
•  Left child: 2*i+1
•  Right child: 2*i + 2
•  Parent: (i-1)/2

HEAPS AS ARRAYS
•  Alternate (common) implementation:

•  Put the root of the array at index 1
•  Leave index 0 blank
•  Calculating children/parent becomes:

•  Left child: 2*i
•  Right child: 2*i + 1
•  Parent: i/2

HEAPS AS ARRAYS
•  Why do an array at all?

HEAPS AS ARRAYS
•  Why do an array at all?

•  + Memory efficiency
•  + Fast accesses to data
•  + Forces log n depth
•  - Needs to resize
•  - Can waste space

HEAPS AS ARRAYS
•  Why do an array at all?

•  + Memory efficiency
•  + Fast accesses to data
•  + Forces log n depth
•  - Needs to resize
•  - Can waste space

•  Overall, however, better done through an
array

ALGORITHM ANALYSIS
•  Important topic. Why?

ALGORITHM ANALYSIS
•  Important topic. Why?

•  Show that an implementation is better.

ALGORITHM ANALYSIS
•  Important topic. Why?

•  Show that an implementation is better.
•  What do we mean by better?

ALGORITHM ANALYSIS
•  Important topic. Why?

•  Show that an implementation is better.
•  What do we mean by better?

•  Fewer clock cycles
•  More efficient memory usage
•  Correctness

ALGORITHM ANALYSIS
•  Math review
•  Logarithms

•  log2 x = y when x = 2y!

ALGORITHM ANALYSIS
•  Math review
•  Logarithms

•  log2 x = y when x = 2y!

•  How does this grow?

ALGORITHM ANALYSIS
•  Math review
•  Logarithms

•  log2 x = y when x = 2y!

•  How does this grow? Slowly
•  A balanced tree has a height ~log2 n
•  logk x differs from logj x by a

constant factor

ALGORITHM ANALYSIS
•  Operations

•  log(A*B) = log(A) + log(B)!
•  log(A/B) = log(A) – log(B)!
•  log(AB) = B * log(A)!

ALGORITHM ANALYSIS
•  Floor and ceiling
!

ALGORITHM ANALYSIS
•  Floor and ceiling

•  Integer rounding, computers operate in
integer quantities

•  Clock cycles
•  Memory bytes

!

ALGORITHM ANALYSIS
•  Floor and ceiling

•  Integer rounding, computers operate in
integer quantities

•  Clock cycles
•  Memory bytes

Floor : ⎣X⎦ denotes largest integer < x
Ceiling: ⎡X⎤ denotes smallest integer > x

!

ALGORITHM ANALYSIS
•  Operations

!

ALGORITHM ANALYSIS
•  Operations

•  Arithmetic
•  Comparisons
•  Memory reads/writes

•  Loops and functions are just chains of
these operations.

!

ALGORITHM ANALYSIS
Int value = 0;!

for(int i = 0; i < 10; i ++){!

! value++; !!

}!

!

ALGORITHM ANALYSIS
Int value = 0;!

for(int i = 0; i < 10; i ++){!

! value++; !!

}!

!

How long does this take?

!

ALGORITHM ANALYSIS
Int value = 0;!

for(int i = 0; i < 10; i ++){!

! value++; !!

}!

!

How long does this take?
 How many operations?

!

ALGORITHM ANALYSIS
Int value = 0; 1!

for(int i = 0; i < 10; i ++){ 10!

! value++; !1!

}!

!

How long does this take?
 How many operations?

!

ALGORITHM ANALYSIS
Int value = 0; 1 + 1!

for(int i = 0; i < 10; i ++){ 10!

! value++; !1!

}!

!

How long does this take?
 How many operations?

!

ALGORITHM ANALYSIS
Int value = 0; 1 + 1!

for(int i = 0; i < 10; i ++){ 10!

! value++; !1!

}!

!

How long does this take?
 How many operations?
 2+11+10 = 23

!

ALGORITHM ANALYSIS
Int value = 0;!

for(int i = 0; i < N; i ++){!

! value++; !!

}!

!

How long does this take?

!

ALGORITHM ANALYSIS
Int value = 0;!

for(int i = 0; i < N; i ++){!

! value++; !!

}!

!

How long does this take?
 1+1+(N+1) + N

!

ALGORITHM ANALYSIS
•  Principles of analysis

!

ALGORITHM ANALYSIS
•  Principles of analysis

•  Determining performance behavior

!

ALGORITHM ANALYSIS
•  Principles of analysis

•  Determining performance behavior
•  How does an algorithm react to new data

or changes?

!

ALGORITHM ANALYSIS
•  Principles of analysis

•  Determining performance behavior
•  How does an algorithm react to new data

or changes?
•  Independent of language or

implementation

!

ALGORITHM ANALYSIS
•  Example: find()
•  Suppose an array with 15 elements

!

ALGORITHM ANALYSIS
•  Example: find()
•  Suppose an array with 15 elements
•  One implementation has a sorted array,

 the other is unsorted

!

ALGORITHM ANALYSIS
•  Example: find()
•  Suppose an array with 15 elements
•  One implementation has a sorted array,

 the other is unsorted
•  For which one will find() be faster?

!

ALGORITHM ANALYSIS
•  Example: find()
•  Suppose an array with 5 elements
•  One implementation has a sorted array,

 the other is unsorted
•  For which one will find() be faster?
•  How long will it take?

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Find(1)

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Find(1)
•  How many operations?

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Find(4)?

!

ALGORITHM ANALYSIS
•  Not a good representation of how the

algorithm actually behaves.
•  Want to assess the algorithm on the

whole, not just over a few inputs

!

ALGORITHM ANALYSIS
•  Not a good representation of how the

algorithm actually behaves.
•  Want to assess the algorithm on the

whole, not just over a few inputs
•  This is why testing alone isn’t enough

!

ALGORITHM ANALYSIS
•  Possible solutions?

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Average case: find the average
performance over all inputs

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Average case: find the average
performance over all inputs

•  Worst case: how long the program takes
to complete the worst case problems.

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Average case: can be difficult to compute

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Average case: can be difficult to compute
•  What is the average case for binary

search?

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Worst case: is most commonly used

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Worst case: is most commonly used
•  Easily compared and gives a good

estimate of the robustness of an algorithm

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Worst case: is most commonly used
•  Easily compared and gives a good

estimate of the robustness of an algorithm

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Worst case runtime here?

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Worst case runtime here?
•  Are we convinced one is better just

looking at 5 elements?

!

ASYMPTOTIC ANALYSIS
•  Want to know how algorithms behave

with big data

!

ASYMPTOTIC ANALYSIS
•  Want to know how algorithms behave

with big data
•  How much more does an additional

element in our data structure cost us?

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  Which is better?

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  Which is better?
•  Unsorted grows linearly – if we add one

more element to the list, we expect that
the algorithm will take one more
operation to complete

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  Which is better?
•  Unsorted grows linearly – if we add one

more element to the list, we expect that
the algorithm will take one more
operation to complete

•  How much longer is an extra element in
the sorted case?

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  As trees grow exponentially in size…

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  As trees grow exponentially in size

 they grow logarithmically in height

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  As trees grow exponentially in size

 they grow logarithmically in height
•  Height is what determines our runtime

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  We call the unsorted case: linear time or

O(n) time
•  We call the sorted case: logarithmic time

or O(log n) time

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  We call the unsorted case: linear time or

O(n) time
•  We call the sorted case: logarithmic time

or O(log n) time
•  You may have seen this notation in 143

!

ASYMPTOTIC ANALYSIS
•  Big-O notation

!

ASYMPTOTIC ANALYSIS
•  Big-O notation

•  Captures this asymptotic behavior;
•  As we approach larger and larger

elements, how long does our algorithm
take to complete.

!

ASYMPTOTIC ANALYSIS
•  Big-O notation

•  Captures this asymptotic behavior;
•  As we approach larger and larger

elements, how long does our algorithm
take to complete.

•  Informally, if a function is O(g(n)), then
that function grows at most as quickly as
the function g(n)!

!

BINARY SEARCH
•  Analyzing binary search.
•  What is the worst case?

!

BINARY SEARCH
•  Analyzing binary search.
•  What is the worst case?

•  When the item is not in the list

!

BINARY SEARCH
•  Analyzing binary search.
•  What is the worst case?

•  When the item is not in the list
•  How long does this take to run?

!

BINARY SEARCH
•  Consider the algorithm
public int binarySearch(int[] data, int toFind){!

int low = 0; int high = data.length-1;!

while(low <= high){!

!int mid = (low+high)/2;!

!if(toFind>mid) low = mid+1; continue;!

!else if(toFind<mid) high = mid-1; continue; !

!else return mid;!

}!

return -1;!

}!

!

BINARY SEARCH
•  What is important here?

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?
•  At first iteration, N/2 elements remain

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?
•  At first iteration, N/2 elements remain
•  At second, N/4 elements remain

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?
•  At first iteration, N/2 elements remain
•  At second, N/4 elements remain
•  At the kth iteration?

!

BINARY SEARCH
•  At the kth iteration:

•  N/2k elements remain.
•  When does this terminate?

!

BINARY SEARCH
•  At the kth iteration:

•  N/2k elements remain.
•  When does this terminate?

•  When N/2k = 1

!

BINARY SEARCH
•  At the kth iteration:

•  N/2k elements remain.
•  When does this terminate?

•  When N/2k = 1
•  How many iterations then? Solve for k.

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1
!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k
!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact?

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact?
•  Where was the error introduced?

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact?
•  Where was the error introduced?

•  N can be things other than powers of two

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact?
•  Where was the error introduced?

•  N can be things other than powers of two
•  Ceiling and floor rounding

!

ANALYSIS
•  If this isn’t exact, is it still correct?

!

ANALYSIS
•  If this isn’t exact, is it still correct?
•  Yes. We care about asymptotic growth.

!

ANALYSIS
•  If this isn’t exact, is it still correct?
•  Yes. We care about asymptotic growth.

•  How a the runtime of an algorithm grows
with big data

!

ANALYSIS
•  If this isn’t exact, is it still correct?
•  Yes. We care about asymptotic growth.

•  How a the runtime of an algorithm grows
with big data

•  To incorporate this perspective, we use
bigO notation

!

BIG-O NOTATION
•  Informally: bigO notation denotes an

upper bound for an algorithms
asymptotic runtime

!

BIG-O NOTATION
•  Informally: bigO notation denotes an

upper bound for an algorithms
asymptotic runtime

•  For example, if an algorithm A is
O(log n), that means some logarithmic
function upper bounds A.

!

BIG-O NOTATION
•  Formally, a function f(n) is O(g(n)) if

there exists a c and n0 such that:
•  For all n > n0, f(n) < c*g(n)!
•  To prove a function is O(g(n)), simply find

the c and n0 and demonstrate that the
inequality is true

!

BIG-O NOTATION
•  Example: is 5n3 + 2n in O(n4)?

!

BIG-O NOTATION
•  Example: is 5n3 + 2n in O(n4)?
•  Can we find a c, n0 such that:
•  5n3 + 2n < c*n4 for all n > n0!

!

BIG-O NOTATION
•  Example: is 5n3 + 2n in O(n4)?
•  Can we find a c, n0 such that:
•  5n3 + 2n < c*n4 for all n > n0!
Let c = 7; 5n3 + 2n < 7n4!

!

BIG-O NOTATION
•  Example: is 5n3 + 2n in O(n4)?
•  Can we find a c, n0 such that:
•  5n3 + 2n < c*n4 for all n > n0!
Let c = 7; 5n3 + 2n < 7n4!

5n3 + 2n < 5n4 + 2n4!

!

BIG-O NOTATION
•  Example: is 5n3 + 2n in O(n4)?
•  Can we find a c, n0 such that:
•  5n3 + 2n < c*n4 for all n > n0!
Let c = 7; 5n3 + 2n < 7n4!

5n3 + 2n < 5n4 + 2n4!

Since n4 > n3 and n4 > n for n > 1!
5n3 + 2n < 7n4 for all n > 1!

!

BIG-O NOTATION
•  Example: is 5n3 + 2n in O(n4)?
•  Can we find a c, n0 such that:
•  5n3 + 2n < c*n4 for all n > n0!
Let c = 7; 5n3 + 2n < 7n4!

5n3 + 2n < 5n4 + 2n4!

Since n4 > n3 and n4 > n for n > 1!
5n3 + 2n < 7n4 for all n > 1!

Therefore, 5n3 + 2n is O(n4)!

!

BIG-O NOTATION
•  This is an upper bound, so if
5n3 + 2n is in O(n4), then
5n3 + 2n is in O(n5) and O(nn)!

!

BIG-O NOTATION
•  This is an upper bound, so if
5n3 + 2n is in O(n4), then
5n3 + 2n is in O(n5) and O(nn)!
•  Is 5n3 + 2n in O(n3)?

!

BIG-O NOTATION
•  This is an upper bound, so if
5n3 + 2n is in O(n4), then
5n3 + 2n is in O(n5) and O(nn)!
•  Is 5n3 + 2n in O(n3)?
•  Yes, let c be 7 and n0 > 1

!

EXAMPLES

•  4 + 3n = O(n)?

EXAMPLES

•  4 + 3n = O(n)?
•  4 + 3n = O(1)?

EXAMPLES

•  4 + 3n = O(n)?
•  4 + 3n = O(1)?
•  4 + 3n = O(n2)
•  n + 2 log n = O(log n)?

EXAMPLES

•  4 + 3n = O(n)?
•  4 + 3n = O(1)?
•  4 + 3n = O(n2)
•  n + 2 log n = O(log n)?
•  log n = O(n + 2 log n)?

