
CSE 332 
JUNE 23RD – PRIORITY QUEUES AND 

 THE HEAP 



TODAY’S LECTURE 
•  Priority Queue ADT 
•  Heap DS 

•  Heap Property 
•  Completeness property 

•  Implementation 
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REVIEW FROM LAST WEEK 
•  Priority Queue 

•  Data enqueued with a priority 
•  Lower priority data dequeue first 
•  Maintain queue principle? 

•  Implementations? 
•  Array and Linked List both have serious 

flaws. 
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•  Still a binary tree 
•  Instead of search (left < parent), 

 parent should be less than children 
•  How to implement?  
•  Insert and delete are different than BST 
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COMPLETENESS 

Filling left to right and top to bottom is 
another property - completeness 
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HEAPS 
•  Heap property (parents < children) 
•  Complete tree property (left to right, 

bottom to top) 
•  How does this help? 

•  Array implementation 
 



HEAPS 

0 1 2 3 4 

•  Insert into array from left to right 
•  For any parent at index i, 

 children at 2*i+1 and 2*i+2 
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HEAPS 
•  How to maintain heap property then? 

•  Parent must be higher priority than 
children 

•  Two functions – percolate up and 
percolate down 



SWAPPING IN THE HEAP 
•  Percolate up 

•  When a new item is inserted: 
•  Place the item at the next position to 

preserve completeness 
•  Swap the item up the tree until it is larger 

than its parent 



SWAPPING IN THE HEAP 
•  Percolate down 

•  When an item is deleted: 
•  Remove the root of the tree (to be returned) 
•  Move the last object in the tree to the root 
•  Swap the moved piece down while it is 

larger than it’s smallest child 
•  Only swap with the smallest child 



HEAPS AS ARRAYS 
•  Because heaps are complete, they can be 

represented as arrays without any gaps 
in them. 

•  Naïve implementation: 
•  Left child: 2*i+1 
•  Right child: 2*i + 2 
•  Parent: (i-1)/2 



HEAPS AS ARRAYS 
•  Alternate (common) implementation: 

•  Put the root of the array at index 1 
•  Leave index 0 blank 
•  Calculating children/parent becomes: 

•  Left child: 2*i 
•  Right child: 2*i + 1 
•  Parent: i/2 
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HEAPS AS ARRAYS 
•  Why do an array at all? 

•  + Memory efficiency 
•  + Fast accesses to data 
•  + Forces log n depth 
•  - Needs to resize 
•  - Can waste space 

•  Overall, however, better done through an 
array 
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ALGORITHM ANALYSIS 
•  Important topic. Why? 

•  Show that an implementation is better. 
•  What do we mean by better? 

•  Fewer clock cycles 
•  More efficient memory usage 
•  Correctness 
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ALGORITHM ANALYSIS 
•  Math review 
•  Logarithms 

•  log2 x = y when x = 2y!

•  How does this grow? Slowly 
•  A balanced tree has a height ~log2 n 
•  logk x differs from logj x by a 

constant factor 



ALGORITHM ANALYSIS 
•  Operations 

•  log(A*B) = log(A) + log(B)!
•  log(A/B) = log(A) – log(B)!
•  log(AB) = B * log(A)!
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ALGORITHM ANALYSIS 
•  Floor and ceiling 

•  Integer rounding, computers operate in 
integer quantities 

•  Clock cycles 
•  Memory bytes 

Floor :  ⎣X⎦ denotes largest integer < x 
Ceiling:  ⎡X⎤ denotes smallest integer > x 
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ALGORITHM ANALYSIS 
•  Operations 
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ALGORITHM ANALYSIS 
•  Operations 

•  Arithmetic 
•  Comparisons 
•  Memory reads/writes 

•  Loops and functions are just chains of 
these operations.   

!
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! value++; !1!

}!
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Int value = 0; 1 + 1!
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! value++; !1!

}!

!

How long does this take? 
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ALGORITHM ANALYSIS 
Int value = 0; 1 + 1!

for(int i = 0; i < 10; i ++){ 10!

! value++; !1!

}!

!

How long does this take? 
 How many operations? 
  2+11+10 = 23 
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ALGORITHM ANALYSIS 
Int value = 0;!

for(int i = 0; i < N; i ++){!

! value++; !!

}!

!
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ALGORITHM ANALYSIS 
Int value = 0;!

for(int i = 0; i < N; i ++){!

! value++; !!

}!

!

How long does this take? 
 1+1+(N+1) + N 

 

!
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ALGORITHM ANALYSIS 
•  Principles of analysis 

•  Determining performance behavior 
•  How does an algorithm react to new data 

or changes? 
•  Independent of language or 

implementation 
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•  One implementation has a sorted array, 

 the other is unsorted 
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ALGORITHM ANALYSIS 
•  Example: find()  
•  Suppose an array with 5 elements 
•  One implementation has a sorted array, 

 the other is unsorted 
•  For which one will find() be faster? 
•  How long will it take? 
 

  

!



ALGORITHM ANALYSIS 

4 2 5 3 1 
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•  Find(1) 
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•  Find(1) 
•  How many operations? 
 

  

!



ALGORITHM ANALYSIS 

4 2 5 3 1 

1 2 3 4 5 

•  Find(4)? 
  

!
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ALGORITHM ANALYSIS 
•  Not a good representation of how the 

algorithm actually behaves. 
•  Want to assess the algorithm on the 

whole, not just over a few inputs 
•  This is why testing alone isn’t enough 
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ALGORITHM ANALYSIS 
•  Possible solutions? 

•  Average case: find the average 
performance over all inputs 

•  Worst case: how long the program takes 
to complete the worst case problems. 
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ALGORITHM ANALYSIS 
•  Possible solutions? 

•  Average case: can be difficult to compute 
•  What is the average case for binary 

search? 
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•  Worst case runtime here? 
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ALGORITHM ANALYSIS 

4 2 5 3 1 

1 2 3 4 5 

•  Worst case runtime here? 
•  Are we convinced one is better just 

looking at 5 elements? 
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ASYMPTOTIC ANALYSIS 
•  Want to know how algorithms behave 

with big data 
•  How much more does an additional 

element in our data structure cost us? 
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ASYMPTOTIC ANALYSIS 
•  Consider find() for sorted v. unsorted 

arrays 
•  Which is better? 
•  Unsorted grows linearly – if we add one 

more element to the list, we expect that 
the algorithm will take one more 
operation to complete 

•  How much longer is an extra element in 
the sorted case? 
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ASYMPTOTIC ANALYSIS 
•  Consider find() for sorted v. unsorted 

arrays 
•  As trees grow exponentially in size      

 they grow logarithmically in height 
•  Height is what determines our runtime 
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ASYMPTOTIC ANALYSIS 
•  Consider find() for sorted v. unsorted 

arrays 
•  We call the unsorted case: linear time or 

O(n) time 
•  We call the sorted case: logarithmic time 

or O(log n) time 
•  You may have seen this notation in 143 
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ASYMPTOTIC ANALYSIS 
•  Big-O notation 

•  Captures this asymptotic behavior; 
•  As we approach larger and larger 

elements, how long does our algorithm 
take to complete. 

•  Informally, if a function is O(g(n)), then 
that function grows at most as quickly as 
the function g(n)!

!
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•  What is the worst case? 
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BINARY SEARCH 
•  Analyzing binary search. 
•  What is the worst case? 

•  When the item is not in the list 
•  How long does this take to run? 
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BINARY SEARCH 
•  Consider the algorithm 
public int binarySearch(int[] data, int toFind){!

int low = 0; int high = data.length-1;!

while(low <= high){!

!int mid = (low+high)/2;!

!if(toFind>mid) low = mid+1; continue;!

!else if(toFind<mid) high = mid-1; continue; !

!else return mid;!

}!

return -1;!

}!

  

!
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BINARY SEARCH 
•  What is important here? 

•  At each iteration, we eliminate half of the 
remaining elements. 

•  How long will it take to reach the end? 
•  At first iteration, N/2 elements remain 
•  At second, N/4 elements remain 
•  At the kth iteration?   
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BINARY SEARCH 
•  At the kth iteration: 

•  N/2k elements remain. 
•  When does this terminate? 

•  When N/2k = 1   
•  How many iterations then? Solve for k. 
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BINARY SEARCH 
•  Solve for k. 
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact? 
•  Where was the error introduced? 

•  N can be things other than powers of two 
•  Ceiling and floor rounding 

!
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ANALYSIS 
•  If this isn’t exact, is it still correct? 
•  Yes. We care about asymptotic growth. 

•  How a the runtime of an algorithm grows 
with big data 

•  To incorporate this perspective, we use 
bigO notation 

!



BIG-O NOTATION 
•  Informally: bigO notation denotes an 

upper bound for an algorithms 
asymptotic runtime 

!



BIG-O NOTATION 
•  Informally: bigO notation denotes an 

upper bound for an algorithms 
asymptotic runtime 

•  For example, if an algorithm A is  
O(log n), that means some logarithmic 
function upper bounds A. 
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BIG-O NOTATION 
•  Formally, a function f(n) is O(g(n)) if 

there exists a c and n0 such that: 
•  For all n > n0, f(n) < c*g(n)!
•  To prove a function is O(g(n)), simply find 

the c and n0 and demonstrate that the 
inequality is true 

!



BIG-O NOTATION 
•  Example: is 5n3 + 2n in O(n4)? 
 
!



BIG-O NOTATION 
•  Example: is 5n3 + 2n in O(n4)? 
•  Can we find a c, n0 such that: 
•  5n3 + 2n < c*n4 for all n > n0!
 
!



BIG-O NOTATION 
•  Example: is 5n3 + 2n in O(n4)? 
•  Can we find a c, n0 such that: 
•  5n3 + 2n < c*n4 for all n > n0!
Let c = 7; 5n3 + 2n < 7n4!

 
!



BIG-O NOTATION 
•  Example: is 5n3 + 2n in O(n4)? 
•  Can we find a c, n0 such that: 
•  5n3 + 2n < c*n4 for all n > n0!
Let c = 7; 5n3 + 2n < 7n4!

5n3 + 2n < 5n4 + 2n4!

 
!



BIG-O NOTATION 
•  Example: is 5n3 + 2n in O(n4)? 
•  Can we find a c, n0 such that: 
•  5n3 + 2n < c*n4 for all n > n0!
Let c = 7; 5n3 + 2n < 7n4!

5n3 + 2n < 5n4 + 2n4!

Since n4 > n3 and n4 > n for n > 1!
5n3 + 2n < 7n4 for all n > 1!

 
!



BIG-O NOTATION 
•  Example: is 5n3 + 2n in O(n4)? 
•  Can we find a c, n0 such that: 
•  5n3 + 2n < c*n4 for all n > n0!
Let c = 7; 5n3 + 2n < 7n4!

5n3 + 2n < 5n4 + 2n4!

Since n4 > n3 and n4 > n for n > 1!
5n3 + 2n < 7n4 for all n > 1!

Therefore, 5n3 + 2n is O(n4)!
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BIG-O NOTATION 
•  This is an upper bound, so if 
5n3 + 2n is in O(n4), then  
5n3 + 2n is in O(n5) and O(nn)!
•  Is 5n3 + 2n in O(n3)? 
•  Yes, let c be 7 and n0 > 1 
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EXAMPLES 

•  4 + 3n = O(n)? 
•  4 + 3n = O(1)? 
•  4 + 3n = O(n2) 
•  n + 2 log n = O(log n)? 
•  log n = O(n + 2 log n)? 

 


