CSE 332

JUNE 23RD – PRIORITY QUEUES AND THE HEAP

TODAY'S LECTURE

- Priority Queue ADT
- Heap DS
 - Heap Property
 - Completeness property
- Implementation

Priority Queue

- Priority Queue
 - Data enqueued with a priority

- Priority Queue
 - Data enqueued with a priority
 - Lower priority data dequeue first

- Priority Queue
 - Data enqueued with a priority
 - Lower priority data dequeue first
 - Maintain queue principle?

- Priority Queue
 - Data enqueued with a priority
 - Lower priority data dequeue first
 - Maintain queue principle?
- Implementations?

- Priority Queue
 - Data enqueued with a priority
 - Lower priority data dequeue first
 - Maintain queue principle?
- Implementations?
 - Array and Linked List both have serious flaws.

- Still a binary tree
- Instead of search (left < parent),

- Still a binary tree
- Instead of search (left < parent), parent should be less than children

- Still a binary tree
- Instead of search (left < parent), parent should be less than children
- How to implement?
- Insert and delete are different than BST

- Still a binary tree
- Instead of search (left < parent), parent should be less than children
- How to implement?
- Insert and delete are different than BST

COMPLETENESS

COMPLETENESS

Filling left to right and top to bottom is another property - completeness

- Heap property (parents < children)
- Complete tree property (left to right, bottom to top)
- How does this help?

- Heap property (parents < children)
- Complete tree property (left to right, bottom to top)
- How does this help?
 - Array implementation

- Insert into array from left to right
- For any parent at index i, children at 2*i+1 and 2*i+2

How to maintain heap property then?

How to maintain heap property then?

 Parent must be higher priority than children

- How to maintain heap property then?
 - Parent must be higher priority than children
- Two functions percolate up and percolate down

SWAPPING IN THE HEAP

- Percolate up
 - When a new item is inserted:
 - Place the item at the next position to preserve completeness
 - Swap the item up the tree until it is larger than its parent

SWAPPING IN THE HEAP

- Percolate down
 - When an item is deleted:
 - Remove the root of the tree (to be returned)
 - Move the last object in the tree to the root
 - Swap the moved piece down while it is larger than it's smallest child
 - Only swap with the smallest child

- Because heaps are complete, they can be represented as arrays without any gaps in them.
- Naïve implementation:
 - Left child: 2*i+1
 - Right child: 2*i + 2
 - Parent: (i-1)/2

- Alternate (common) implementation:
 - Put the root of the array at index 1
 - Leave index 0 blank
 - Calculating children/parent becomes:
 - Left child: 2*i
 - Right child: 2*i + 1
 - Parent: i/2

• Why do an array at all?

- Why do an array at all?
 - + Memory efficiency
 - + Fast accesses to data
 - + Forces log n depth
 - Needs to resize
 - Can waste space

- Why do an array at all?
 - + Memory efficiency
 - + Fast accesses to data
 - + Forces log n depth
 - Needs to resize
 - Can waste space
- Overall, however, better done through an array

Important topic. Why?

- Important topic. Why?
 - Show that an implementation is better.

- Important topic. Why?
 - Show that an implementation is better.
- What do we mean by better?

- Important topic. Why?
 - Show that an implementation is better.
- What do we mean by better?
 - Fewer clock cycles
 - More efficient memory usage
 - Correctness

- Math review
- Logarithms
 - $\log_2 x = y$ when $x = 2^y$

- Math review
- Logarithms
 - $\log_2 x = y$ when $x = 2^y$
 - How does this grow?

- Math review
- Logarithms
 - $\log_2 x = y$ when $x = 2^y$
 - How does this grow? Slowly
 - A balanced tree has a height ~log₂ n
 - log_k x differs from log_j x by a constant factor

Operations

- log(A*B) = log(A) + log(B)
- log(A/B) = log(A) log(B)
- $log(A^B) = B * log(A)$

Floor and ceiling
- Floor and ceiling
 - Integer rounding, computers operate in integer quantities
 - Clock cycles
 - Memory bytes

- Floor and ceiling
 - Integer rounding, computers operate in integer quantities
 - Clock cycles
 - Memory bytes

Floor : [X] denotes largest integer $\leq x$

Ceiling: [X] denotes smallest integer > x

Operations

- Operations
 - Arithmetic
 - Comparisons
 - Memory reads/writes
- Loops and functions are just chains of these operations.

```
Int value = 0;
for(int i = 0; i < 10; i ++){
    value++;
```

}

```
Int value = 0;
for(int i = 0; i < 10; i ++){
    value++;
}
```

How long does this take?

```
Int value = 0;
for(int i = 0; i < 10; i ++){
    value++;
```

How long does this take? How many operations?

}

```
Int value = 0; 1
for(int i = 0; i < 10; i ++){ 10
    value++; 1
}</pre>
```

How long does this take? How many operations?

Int value = 0; 1 + 1
for(int i = 0; i < 10; i ++){ 10
 value++; 1
}</pre>

How long does this take? How many operations?

Int value = 0; 1 + 1
for(int i = 0; i < 10; i ++){ 10
 value++; 1
}</pre>

How long does this take? How many operations? 2+11+10 = 23

```
Int value = 0;
for(int i = 0; i < N; i ++){
    value++;
}
```

How long does this take?

```
Int value = 0;
for(int i = 0; i < N; i ++){
    value++;
}
```

```
How long does this take?
1+1+(N+1) + N
```

Principles of analysis

- Principles of analysis
 - Determining performance behavior

- Principles of analysis
 - Determining performance behavior
 - How does an algorithm react to new data or changes?

- Principles of analysis
 - Determining performance behavior
 - How does an algorithm react to new data or changes?
 - Independent of language or implementation

- Example: find()
- Suppose an array with 15 elements

- Example: find()
- Suppose an array with 15 elements
- One implementation has a sorted array, the other is unsorted

- Example: find()
- Suppose an array with 15 elements
- One implementation has a sorted array, the other is unsorted
- For which one will find() be faster?

- Example: find()
- Suppose an array with 5 elements
- One implementation has a sorted array, the other is unsorted
- For which one will find() be faster?
- How long will it take?

• Find(1)

1	2	3	4	5			
---	---	---	---	---	--	--	--

	4	2	5	3	1			
--	---	---	---	---	---	--	--	--

- Find(1)
- How many operations?

1 2 3 4	5		
---------	---	--	--

	4	2	5	3	1			
--	---	---	---	---	---	--	--	--

• Find(4)?

1	2	3	4	5			
---	---	---	---	---	--	--	--

	4	2	5	3	1			
--	---	---	---	---	---	--	--	--

- Not a good representation of how the algorithm actually behaves.
- Want to assess the algorithm on the whole, not just over a few inputs

- Not a good representation of how the algorithm actually behaves.
- Want to assess the algorithm on the whole, not just over a few inputs
- This is why testing alone isn't enough

Possible solutions?

- Possible solutions?
 - Average case: find the average performance over all inputs

- Possible solutions?
 - Average case: find the average performance over all inputs
 - Worst case: how long the program takes to complete the worst case problems.

- Possible solutions?
 - Average case: can be difficult to compute

- Possible solutions?
 - Average case: can be difficult to compute
 - What is the average case for binary search?

- Possible solutions?
 - Worst case: is most commonly used

- Possible solutions?
 - Worst case: is most commonly used
 - Easily compared and gives a good estimate of the robustness of an algorithm

- Possible solutions?
 - Worst case: is most commonly used
 - Easily compared and gives a good estimate of the robustness of an algorithm

• Worst case runtime here?

1	2	3	4	5			
---	---	---	---	---	--	--	--

|--|

- Worst case runtime here?
- Are we convinced one is better just looking at 5 elements?

1 2 3	4	5			
-------	---	---	--	--	--

4	2	5	3	1			
---	---	---	---	---	--	--	--

ASYMPTOTIC ANALYSIS

 Want to know how algorithms behave with big data
- Want to know how algorithms behave with big data
- How much more does an additional element in our data structure cost us?

Consider find() for sorted v. unsorted arrays

- Consider find() for sorted v. unsorted arrays
 - Which is better?

- Consider find() for sorted v. unsorted arrays
 - Which is better?
 - Unsorted grows linearly if we add one more element to the list, we expect that the algorithm will take one more operation to complete

- Consider find() for sorted v. unsorted arrays
 - Which is better?
 - Unsorted grows linearly if we add one more element to the list, we expect that the algorithm will take one more operation to complete
 - How much longer is an extra element in the sorted case?

- Consider find() for sorted v. unsorted arrays
 - As trees grow exponentially in size...

- Consider find() for sorted v. unsorted arrays
 - As trees grow exponentially in size they grow logarithmically in height

- Consider find() for sorted v. unsorted arrays
 - As trees grow exponentially in size they grow logarithmically in height
 - Height is what determines our runtime

- Consider find() for sorted v. unsorted arrays
 - We call the unsorted case: linear time or O(n) time
 - We call the sorted case: logarithmic time or O(log n) time

- Consider find() for sorted v. unsorted arrays
 - We call the unsorted case: linear time or O(n) time
 - We call the sorted case: logarithmic time or O(log n) time
 - You may have seen this notation in 143

Big-O notation

Big-O notation

- Captures this asymptotic behavior;
- As we approach larger and larger elements, how long does our algorithm take to complete.

Big-O notation

- Captures this asymptotic behavior;
- As we approach larger and larger elements, how long does our algorithm take to complete.
- Informally, if a function is O(g(n)), then that function grows at most as quickly as the function g(n)

- Analyzing binary search.
- What is the worst case?

- Analyzing binary search.
- What is the worst case?
 - When the item is not in the list

- Analyzing binary search.
- What is the worst case?
 - When the item is not in the list
- How long does this take to run?

Consider the algorithm

}

```
public int binarySearch(int[] data, int toFind){
int low = 0; int high = data.length-1;
while(low <= high){
    int mid = (low+high)/2;
    if(toFind>mid) low = mid+1; continue;
    else if(toFind<mid) high = mid-1; continue;
    else return mid;
}
return -1;</pre>
```

• What is important here?

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?
 - At first iteration, N/2 elements remain

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?
 - At first iteration, N/2 elements remain
 - At second, N/4 elements remain

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?
 - At first iteration, N/2 elements remain
 - At second, N/4 elements remain
 - At the kth iteration?

- At the kth iteration:
 - N/2^k elements remain.
- When does this terminate?

- At the kth iteration:
 - N/2^k elements remain.
- When does this terminate?
 - When N/2^k = 1

- At the kth iteration:
 - N/2^k elements remain.
- When does this terminate?
 - When N/2^k = 1
- How many iterations then? Solve for k.

- Solve for k.
- $N / 2^{k} = 1$

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$
- $\log_2 N = k$

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$
- $\log_2 N = k$
- Is this exact?

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^{k}$
- $\log_2 N = k$
- Is this exact?
- Where was the error introduced?

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$
- $\log_2 N = k$
- Is this exact?
- Where was the error introduced?
 - N can be things other than powers of two

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$
- $\log_2 N = k$
- Is this exact?
- Where was the error introduced?
 - N can be things other than powers of two
 - Ceiling and floor rounding

• If this isn't exact, is it still correct?

ANALYSIS

- If this isn't exact, is it still correct?
- Yes. We care about asymptotic growth.
ANALYSIS

- If this isn't exact, is it still correct?
- Yes. We care about asymptotic growth.
 - How a the runtime of an algorithm grows with big data

ANALYSIS

- If this isn't exact, is it still correct?
- Yes. We care about asymptotic growth.
 - How a the runtime of an algorithm grows with big data
- To incorporate this perspective, we use bigO notation

 Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime

- Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime
- For example, if an algorithm A is
 O(log n), that means some logarithmic function upper bounds A.

- Formally, a function f(n) is O(g(n)) if there exists a c and n_o such that:
- For all $n \ge n_0$, f(n) < c*g(n)
- To prove a function is O(g(n)), simply find the c and n₀ and demonstrate that the inequality is true

• Example: is $5n^3 + 2n in O(n^4)$?

- Example: is $5n^3 + 2n in O(n^4)$?
- Can we find a c, n_0 such that:
- $5n^3$ + $2n \leq c * n^4$ for all $n \geq n_0$

- Example: is $5n^3 + 2n in O(n^4)$?
- Can we find a c, n_0 such that:
- $5n^3 + 2n \leq c * n^4$ for all $n \geq n_0$

Let c = 7; $5n^3 + 2n \le 7n^4$

- Example: is $5n^3 + 2n in O(n^4)$?
- Can we find a c, n_0 such that:
- $5n^3 + 2n \leq c * n^4$ for all $n \geq n_0$

Let c = 7; $5n^3 + 2n \le 7n^4$

 $5n^3 + 2n \leq 5n^4 + 2n^4$

- Example: is $5n^3 + 2n in O(n^4)$?
- Can we find a c, n_0 such that:
- $5n^3$ + $2n \leq c * n^4$ for all $n \geq n_0$

Let c = 7; $5n^3 + 2n \le 7n^4$

- $5n^3 + 2n \leq 5n^4 + 2n^4$
- Since $n^4 \ge n^3$ and $n^4 \ge n$ for $n \ge 1$
- $5n^3 + 2n \leq 7n^4$ for all $n \geq 1$

- Example: is $5n^3 + 2n in O(n^4)$?
- Can we find a c, n_0 such that:
- $5n^3 + 2n \leq c * n^4$ for all $n \geq n_0$

Let c = 7; $5n^3 + 2n \le 7n^4$

- $5n^3 + 2n \leq 5n^4 + 2n^4$
- Since $n^4 \ge n^3$ and $n^4 \ge n$ for $n \ge 1$
- $5n^3 + 2n \leq 7n^4$ for all $n \geq 1$
- Therefore, $5n^3 + 2n$ is $O(n^4)$

- This is an upper bound, so if
- $5n^3 + 2n$ is in O(n^4), then
- $5n^3 + 2n is in O(n^5)$ and $O(n^n)$

- This is an upper bound, so if
- $5n^3 + 2n$ is in O(n^4), then
- $5n^3 + 2n \text{ is in } O(n^5)$ and $O(n^n)$
- $ls 5n^3 + 2n in O(n^3)$?

- This is an upper bound, so if
- $5n^3 + 2n$ is in O(n^4), then
- $5n^3 + 2n \text{ is in } O(n^5)$ and $O(n^n)$
- $ls 5n^3 + 2n in O(n^3)$?
- Yes, let c be 7 and $n_0 > 1$

• 4 + 3n = O(n)?

- 4 + 3n = O(n)?
- 4 + 3n = O(1)?

- 4 + 3n = O(n)?
- 4 + 3n = O(1)?
- $4 + 3n = O(n^2)$
- n + 2 log n = O(log n)?

- 4 + 3n = O(n)?
- 4 + 3n = O(1)?
- $4 + 3n = O(n^2)$
- n + 2 log n = O(log n)?
- log n = O(n + 2 log n)?