CSE 332

JUNE 23RD - PRIORITY QUEUES AND
THE HEAP

TODAY’S LECTURE

* Priority Queue ADT
« Heap DS

* Heap Property

« Completeness property
* Implementation

REVIEW FROM LAST WEEK

* Priority Queue

REVIEW FROM LAST WEEK

* Priority Queue
- Data enqueued with a priority

REVIEW FROM LAST WEEK

* Priority Queue

- Data enqueued with a priority
* Lower priority data dequeue first

REVIEW FROM LAST WEEK

* Priority Queue

- Data enqueued with a priority
* Lower priority data dequeue first
- Maintain queue principle?

REVIEW FROM LAST WEEK

* Priority Queue

- Data enqueued with a priority
* Lower priority data dequeue first
- Maintain queue principle?

* Implementations?

REVIEW FROM LAST WEEK

* Priority Queue

- Data enqueued with a priority
* Lower priority data dequeue first
- Maintain queue principle?

* Implementations?

* Array and Linked List both have serious
flaws.

HEAP-ORDER PROPERTY

« Still a binary tree
* Instead of search (left < parent),

HEAP-ORDER PROPERTY

« Still a binary tree

 Instead of search (left < parent),
parent should be less than children

HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST

HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST

COMPLETENESS

)
s

16 17 18 19 20 21 22 23 24 25

COMPLETENESS

2
e

16 17 18 19 20 21 22 23 24 25

Filling left to right and top to bottom is
another property - completeness

HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

 How does this help?

HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

 How does this help?
* Array implementation

HEAPS

* Insert into array from left to right

 For any parent at index I,
children at 2*i+1 and 2%i+2

HEAPS

« How to maintain heap property then?

HEAPS

« How to maintain heap property then?

- Parent must be higher priority than
children

HEAPS

« How to maintain heap property then?
- Parent must be higher priority than
children

 Two functions — percolate up and
percolate down

SWAPPING IN THE HEAP

 Percolate up

* When a new item is inserted:

* Place the item at the next position to
preserve completeness

« Swap the item up the tree until it is larger
than its parent

SWAPPING IN THE HEAP

 Percolate down

 When an item is deleted:

Remove the root of the tree (to be returned)
Move the last object in the tree to the root

Swap the moved piece down while it is
larger than it's smallest child

Only swap with the smallest child

HEAPS AS ARRAYS

 Because heaps are complete, they can be
represented as arrays without any gaps
in them.

* Naive implementation:
o Left child: 2%i+1
* Right child: 2%i + 2
« Parent: (i-1)/2

HEAPS AS ARRAYS

« Alternate (common) implementation:

* Put the root of the array at index 1
* Leave index O blank

 Calculating children/parent becomes:
 Left child: 2%
* Right child: 2%i + 1
« Parent: i/2

HEAPS AS ARRAYS

« Why do an array at all?

HEAPS AS ARRAYS

« Why do an array at all?

« + Memory efficiency

+ Fast accesses to data
+ Forces log n depth

- Needs to resize

- Can waste space

HEAPS AS ARRAYS

« Why do an array at all?

« + Memory efficiency

* + Fast accesses to data
* + Forces log n depth

* - Needs to resize

« - Can waste space

* Overall, however, better done through an
array

ALGORITHM ANALYSIS

* Important topic. Why?

ALGORITHM ANALYSIS

* Important topic. Why?
* Show that an implementation is better.

ALGORITHM ANALYSIS

* Important topic. Why?

* Show that an implementation is better.
« What do we mean by better?

ALGORITHM ANALYSIS

* Important topic. Why?
* Show that an implementation is better.
« What do we mean by better?

* Fewer clock cycles
* More efficient memory usage
* Correctness

ALGORITHM ANALYSIS

« Math review
* Logarithms

* log, x =y whenx = 2Y

ALGORITHM ANALYSIS

 Math review

* Logarithms
* log, x =y whenx = 2Y
* How does this grow?

ALGORITHM ANALYSIS

 Math review

* Logarithms
* log, x =y whenx = 2Y
* How does this grow? Slowly

- Abalanced tree has a height ~log, n

* log, x differs from log, x by a
constant factor

ALGORITHM ANALYSIS

* Operations
° log(A*B) = log(A) + log(B)
* log(A/B) = log(A) — log(B)
* log(A®) = B * log(A)

ALGORITHM ANALYSIS

* Floor and ceiling

ALGORITHM ANALYSIS

* Floor and ceiling
* Integer rounding, computers operate in
integer quantities
* Clock cycles
* Memory bytes

ALGORITHM ANALYSIS

* Floor and ceiling
* Integer rounding, computers operate in
integer quantities
* Clock cycles
* Memory bytes

Floor : X] denotes largest integer < x

Ceiling: [X] denotes smallest integer > x

ALGORITHM ANALYSIS

* Operations

ALGORITHM ANALYSIS

* Operations

* Arithmetic
« Comparisons
* Memory reads/writes

 Loops and functions are just chains of
these operations.

ALGORITHM ANALYSIS

Int value = 0;
for(int 1 = 0; 1 < 10; 1 ++){

value++;

ALGORITHM ANALYSIS

Int value = 0;
for(int 1 = 0; 1 < 10; 1 ++){

value++;

How long does this take?

ALGORITHM ANALYSIS

Int value = 0;
for(int 1 = 0; 1 < 10; 1 ++){

value++;

How long does this take?

How many operations?

ALGORITHM ANALYSIS

Int value = 0; 1
for(int i = 0; 1 < 10; i ++){ 10

value++; 1

How long does this take?

How many operations?

ALGORITHM ANALYSIS

Int value = 0; 1 + 1
for(int i = 0; i1 < 10; i ++){ 10

value++; 1

How long does this take?

How many operations?

ALGORITHM ANALYSIS

Int value = 0; 1 + 1
for(int i = 0; i1 < 10; i ++){ 10

value++; 1

How long does this take?

How many operations?
2+11+10 = 23

ALGORITHM ANALYSIS

Int value = 0;
for(int 1 = 0; 1 < N; 1 ++){

value++;

How long does this take?

ALGORITHM ANALYSIS

Int value = 0;
for(int 1 = 0; 1 < N; 1 ++){

value++;

How long does this take?
1+1+(N+1) + N

ALGORITHM ANALYSIS

* Principles of analysis

ALGORITHM ANALYSIS

* Principles of analysis
« Determining performance behavior

ALGORITHM ANALYSIS

* Principles of analysis

« Determining performance behavior

* How does an algorithm react to new data
or changes?

ALGORITHM ANALYSIS

* Principles of analysis

« Determining performance behavior

* How does an algorithm react to new data
or changes?

* Independent of language or
Implementation

ALGORITHM ANALYSIS

« Example: find()
 Suppose an array with 15 elements

ALGORITHM ANALYSIS

« Example: find()
 Suppose an array with 15 elements

 One implementation has a sorted array,
the other is unsorted

ALGORITHM ANALYSIS

Example: find()
 Suppose an array with 15 elements

One implementation has a sorted array,
the other is unsorted

* For which one will find() be faster?

ALGORITHM ANALYSIS

Example: find()
Suppose an array with 5 elements

One implementation has a sorted array,
the other is unsorted

For which one will find() be faster?
How long will it take?

ALGORITHM ANALYSIS
. Find(1)

ALGORITHM ANALYSIS

* Find(1)
 How many operations?

ALGORITHM ANALYSIS
. Find(4)?

ALGORITHM ANALYSIS

 Not a good representation of how the
algorithm actually behaves.

 Want to assess the algorithm on the
whole, not just over a few inputs

ALGORITHM ANALYSIS

 Not a good representation of how the
algorithm actually behaves.

 Want to assess the algorithm on the
whole, not just over a few inputs

* This is why testing alone isn’t enough

ALGORITHM ANALYSIS

 Possible solutions?

ALGORITHM ANALYSIS

 Possible solutions?

* Average case: find the average
performance over all inputs

ALGORITHM ANALYSIS

 Possible solutions?

* Average case: find the average
performance over all inputs

* Worst case: how long the program takes
to complete the worst case problems.

ALGORITHM ANALYSIS

 Possible solutions?
* Average case: can be difficult to compute

ALGORITHM ANALYSIS

 Possible solutions?

» Average case: can be difficult to compute

* What is the average case for binary
search?

ALGORITHM ANALYSIS

* Possible solutions?
* Worst case: is most commonly used

ALGORITHM ANALYSIS

 Possible solutions?

* Worst case: is most commonly used

- Easily compared and gives a good
estimate of the robustness of an algorithm

ALGORITHM ANALYSIS

 Possible solutions?

* Worst case: is most commonly used

- Easily compared and gives a good
estimate of the robustness of an algorithm

ALGORITHM ANALYSIS

« Worst case runtime here?

ALGORITHM ANALYSIS

« Worst case runtime here?

 Are we convinced one is better just
looking at 5 elements?

1 2 3 4 S

ASYMPTOTIC ANALYSIS

« Want to know how algorithms behave
with big data

ASYMPTOTIC ANALYSIS

« Want to know how algorithms behave
with big data

 How much more does an additional
element in our data structure cost us?

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

 Which is better?

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

Which is better?

Unsorted grows linearly — if we add one
more element to the list, we expect that
the algorithm will take one more
operation to complete

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

Which is better?

Unsorted grows linearly — if we add one
more element to the list, we expect that
the algorithm will take one more
operation to complete

How much longer is an extra element in
the sorted case?

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

* As trees grow exponentially in size...

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

* As trees grow exponentially in size
they grow logarithmically in height

ASYMPTOTIC ANALYSIS

Consider find() for sorted v. unsorted
arrays

* As trees grow exponentially in size
they grow logarithmically in height

- Height is what determines our runtime

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

 We call the unsorted case: linear time or
O(n) time

* We call the sorted case: logarithmic time
or O(log n) time

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

We call the unsorted case: linear time or
O(n) time

We call the sorted case: logarithmic time
or O(log n) time

You may have seen this notation in 143

ASYMPTOTIC ANALYSIS

* Big-O notation

ASYMPTOTIC ANALYSIS

* Big-O notation
« Captures this asymptotic behavior;

* As we approach larger and larger
elements, how long does our algorithm
take to complete.

ASYMPTOTIC ANALYSIS

* Big-O notation

« Captures this asymptotic behavior;

* As we approach larger and larger
elements, how long does our algorithm
take to complete.

* Informally, if a functionis O(g(n)), then
that function grows at most as quickly as
the function g(n)

BINARY SEARCH

* Analyzing binary search.
 What is the worst case?

BINARY SEARCH

* Analyzing binary search.
« What is the worst case?
 When the item is not in the list

BINARY SEARCH

* Analyzing binary search.
 What is the worst case?

* When the item is not in the list
« How long does this take to run?

BINARY SEARCH

« Consider the algorithm
public int binarySearch(int[] data, int toFind){
int low = 0; int high = data.length-1;
while(low <= high){
int mid = (low+high)/2;
if(toFind>mid) low = mid+1l; continue;
else if(toFind<mid) high = mid-1; continue;

else return mid;

}

return -1;

}

BINARY SEARCH

 What is important here?

BINARY SEARCH

 What is important here?

* At each iteration, we eliminate half of the
remaining elements.

BINARY SEARCH

 What is important here?

* At each iteration, we eliminate half of the
remaining elements.

« How long will it take to reach the end?

BINARY SEARCH

 What is important here?

* At each iteration, we eliminate half of the
remaining elements.

« How long will it take to reach the end?

BINARY SEARCH

 What is important here?

* At each iteration, we eliminate half of the
remaining elements.

« How long will it take to reach the end?
« At first iteration, N/2 elements remain

BINARY SEARCH

 What is important here?

* At each iteration, we eliminate half of the
remaining elements.

« How long will it take to reach the end?

« At first iteration, N/2 elements remain
At second, N/4 elements remain

BINARY SEARCH

 What is important here?

* At each iteration, we eliminate half of the
remaining elements.

« How long will it take to reach the end?

« At first iteration, N/2 elements remain
At second, N/4 elements remain
At the kth iteration?

BINARY SEARCH

At the kth iteration:

« N/2X elements remain.
* When does this terminate?

BINARY SEARCH

At the kth iteration:

« N/2X elements remain.
* When does this terminate?

« When N/2k =1

BINARY SEARCH

At the kth iteration:

« N/2X elements remain.
* When does this terminate?

« When N/2k = 1
 How many iterations then? Solve for k.

BINARY SEARCH

 Solve for k.
N / 2k =1

BINARY SEARCH

 Solve for k.
N / 2k =1
N = 2k

BINARY SEARCH

 Solve for k.
N / 2k =1

BINARY SEARCH

 Solve for k.

N / 2k =1
N = 2k
log, N = k

 |s this exact?

BINARY SEARCH

 Solve for k.

N / 2k =1
N = 2k
log, N = k

 |s this exact?
« Where was the error introduced?

BINARY SEARCH

 Solve for k.

N / 2k =1
N = 2k
log, N = k

 |s this exact?
« Where was the error introduced?

* N can be things other than powers of two

BINARY SEARCH

 Solve for k.

N / 2k =1
N = 2k
log, N = k

 |s this exact?
« Where was the error introduced?

* N can be things other than powers of two
« Ceiling and floor rounding

ANALYSIS

 If this isn’t exact, is it still correct?

ANALYSIS

 If this isn’t exact, is it still correct?
* Yes. We care about asymptotic growth.

ANALYSIS

 If this isn’t exact, is it still correct?
* Yes. We care about asymptotic growth.

* How a the runtime of an algorithm grows
with big data

ANALYSIS

 If this isn’t exact, is it still correct?
* Yes. We care about asymptotic growth.

* How a the runtime of an algorithm grows
with big data

 To incorporate this perspective, we use
bigO notation

BIG-O NOTATION

* Informally: bigO notation denotes an
upper bound for an algorithms
asymptotic runtime

BIG-O NOTATION

* Informally: bigO notation denotes an
upper bound for an algorithms
asymptotic runtime

 For example, if an algorithm A is
O(log n), that means some logarithmic
function upper bounds A.

BIG-O NOTATION

 Formally, a function £(n) isO(g(n)) if
there exists a c and n, such that:

* Foralln > n,, f£(n) < c*g(n)

* To prove a function is O(g(n)), simply find
the c and n, and demonstrate that the

inequality is true

BIG-O NOTATION

« Example:is 5n3 + 2nin0(n*)?

BIG-O NOTATION

« Example:is 5n3 + 2nin0(n*)?
« Canwe findac, n, such that:

* 5n + 2n < c*n*foralln > n,

BIG-O NOTATION

« Example:is 5n3 + 2nin0(n*)?
« Canwe findac, n, such that:

* 5n + 2n < c*n*foralln > n,

Letc=7;5n3 + 2n < 7n*

BIG-O NOTATION

« Example:is 5n3 + 2nin0(n*)?
 Canwe findac, n, such that:

* 5n + 2n < c*n*foralln > n,

Letc=7;5n3 + 2n < 7n*

5n3 + 2n < 5n%* + 2n*

BIG-O NOTATION

« Example:is 5n3 + 2nin0(n*)?
 Canwe findac, n, such that:

* 5n + 2n < c*n*foralln > n,

Letc=7;5n3 + 2n < 7n*

5n3 + 2n < 5n%* + 2n*

Since n* > n® and n* > n forn > 1

5n3 + 2n < 7n? for all n > 1

BIG-O NOTATION

« Example:is 5n3 + 2nin0(n*)?
 Canwe findac, n, such that:

* 5n + 2n < c*n*foralln > n,

Letc=7;5n3 + 2n < 7n*

5n3 + 2n < 5n%* + 2n*

Since n* > n® and n* > n forn > 1

Therefore, 5n3 + 2n is 0(n*)

5n3 + 2n < 7n? for all n > 1

BIG-O NOTATION

* This is an upper bound, so if
5n3 + 2nisin 0(n?), then

5n3 + 2nisin 0(n®) and O(n®)

BIG-O NOTATION

* This is an upper bound, so if
5n3 + 2nisin 0(n?), then
5n3 + 2nisin 0(n®) and O(n®)

* Is5n3® + 2nin0O(n3)?

BIG-O NOTATION

* This is an upper bound, so if
5n3 + 2nisin 0(n?), then

5n3 + 2nisin 0(n®) and O(n®)
* Is5n3® + 2nin0O(n3)?

* Yes, letcbe 7 and n,>1

EXAMPLES
* 4+ 3n=0(n)?

EXAMPLES

* 4+ 3n=0(n)?
« 4+ 3n=0(1)?

EXAMPLES

* 4+ 3n=0(n)?

« 4+3n=0(1)?

* 4+ 3n = 0(n?

* n+2logn=0(log n)?

EXAMPLES

« 4+ 3n=0(n)?
« 4+3n=0(1)?
* 4+ 3n=0(n?
* n+2logn=0(log n)?
* logn=0(n+2log n)?

