
CSE 332
JULY 26TH – PARALLELISM

FUNDAMENTALS
•  Concurrency

FUNDAMENTALS
•  Concurrency

•  Even a single core can “do” multiple things at
once

FUNDAMENTALS
•  Concurrency

•  Even a single core can “do” multiple things at
once

•  Processor swapping / Time-slicing

FUNDAMENTALS
•  Concurrency

•  Even a single core can “do” multiple things at
once

•  Processor swapping / Time-slicing
•  Parallelism

•  Breaking the problem into smaller pieces that
can be done at once

FUNDAMENTALS
•  Concurrency

•  Even a single core can “do” multiple things at
once

•  Processor swapping / Time-slicing
•  Parallelism

•  Breaking the problem into smaller pieces that
can be done at once

•  Born-on-the-14th problem

FUNDAMENTALS
•  Synchronization

FUNDAMENTALS
•  Synchronization

•  Dealing with shared resources between
threads

FUNDAMENTALS
•  Synchronization

•  Dealing with shared resources between
threads

•  Mutating a single piece of memory

FUNDAMENTALS
•  Synchronization

•  Dealing with shared resources between
threads

•  Mutating a single piece of memory
•  Write-locking: remember sum++ is actually a

three operation call and how it’s ordered with
other operations makes a difference

FUNDAMENTALS
•  Threads v. Processes

FUNDAMENTALS
•  Threads v. Processes

•  In a standard OS course, you might consider
forking a new process when you try and start
a new program

FUNDAMENTALS
•  Threads v. Processes

•  In a standard OS course, you might consider
forking a new process when you try and start
a new program

•  Threads work over the same shared memory

FUNDAMENTALS
•  Threads v. Processes

•  In a standard OS course, you might consider
forking a new process when you try and start
a new program

•  Threads work over the same shared memory
•  Each thread has its own calls stack and

program counter

FUNDAMENTALS
•  Threads v. Processes

•  In a standard OS course, you might consider
forking a new process when you try and start
a new program

•  Threads work over the same shared memory
•  Each thread has its own calls stack and

program counter
•  Can modify freely information in the heap

(memory allocated when you call new)

FUNDAMENTALS
•  Forking and Joining

FUNDAMENTALS
•  Forking and Joining

•  Fork(): Creates a new thread and begins work

FUNDAMENTALS
•  Forking and Joining

•  Fork(): Creates a new thread and begins work
•  Join(): Tells the current thread to wait for the

result of a thread it has created

FUNDAMENTALS
•  Forking and Joining

•  Fork(): Creates a new thread and begins work
•  Join(): Tells the current thread to wait for the

result of a thread it has created
•  Example

FUNDAMENTALS
•  Forking and Joining

•  Fork(): Creates a new thread and begins work
•  Join(): Tells the current thread to wait for the

result of a thread it has created
•  Example
RecursiveTask left = new RecursiveTask(*lefthalf*\)!

RecursiveTask right = new RecursiveTast(\Righthalf\)!

left.fork()!

result = right.compute()!

return combine(left.join,result)!

FUNDAMENTALS
•  Forking and Joining

•  Fork(): Creates a new thread and begins work
•  Join(): Tells the current thread to wait for the

result of a thread it has created
•  Example (Why do it this way?)
RecursiveTask left = new RecursiveTask(*lefthalf*\)!

RecursiveTask right = new RecursiveTast(\Righthalf\)!

left.fork()!

result = right.compute()!

return combine(left.join,result)!

RECURSIVE TASKS
•  Basic ideas for good parallel compute

functions
•  When given a job, a RecursiveTask is also required to start

other recursive tasks.
•  So, the compute function needs to divide the work and

create new RecursiveTask objects to do smaller portions of
the work.

•  Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

•  Creating a new thread takes time!
•  Then, we just need to join together all of their tasks
•  The master thread should also do some work

PARALLEL ANALYSIS
•  How do we analyze parallel programs?

PARALLEL ANALYSIS
•  How do we analyze parallel programs?

•  They do the same amount of work overall, but since they
can do multiple things at once, the overall time to
completion may be different.

•  We can recognize this difference using work and span

PARALLEL ANALYSIS
•  How do we analyze parallel programs?

•  They do the same amount of work overall, but since they
can do multiple things at once, the overall time to
completion may be different.

•  We can recognize this difference using work and span
•  Work is the total amount of work that needs to be done in

the problem (standard sequential computations)

PARALLEL ANALYSIS
•  How do we analyze parallel programs?

•  They do the same amount of work overall, but since they
can do multiple things at once, the overall time to
completion may be different.

•  We can recognize this difference using work and span
•  Work is the total amount of work that needs to be done in

the problem (standard sequential computations)
•  Span is the largest amount of work some processor must

complete

PARALLEL ANALYSIS
•  How do we analyze parallel programs?

•  They do the same amount of work overall, but since they
can do multiple things at once, the overall time to
completion may be different.

•  We can recognize this difference using work and span
•  Work is the total amount of work that needs to be done in

the problem (standard sequential computations)
•  Span is the largest amount of work some processor must

complete (this assumes we have infinite processors)

PARALLEL ANALYSIS
•  Consider work and span for MergeSort

PARALLEL ANALYSIS
•  Consider work and span for MergeSort

•  Work is O(n log n)

PARALLEL ANALYSIS
•  Consider work and span for MergeSort

•  Work is O(n log n)
•  Span is only O(n) --

PARALLEL ANALYSIS
•  Consider work and span for MergeSort

•  Work is O(n log n)
•  Span is only O(n) – This is the final merge

•  We can conduct these as a recurrence

PARALLEL ANALYSIS
•  Consider work and span for MergeSort

•  Work is O(n log n)
•  Span is only O(n) – This is the final merge

•  We can conduct these as a recurrence

•  Work: T(N) = O(n) + 2T(n/2)

PARALLEL ANALYSIS
•  Consider work and span for MergeSort

•  Work is O(n log n)
•  Span is only O(n) – This is the final merge

•  We can conduct these as a recurrence

•  Work: T(N) = O(n) + 2T(n/2)
•  Span: T(N) = O(n) + max(TL (n/2),TR(n/2))

PARALLEL ANALYSIS
•  Consider work and span for MergeSort

•  Work is O(n log n)
•  Span is only O(n) – This is the final merge

•  We can conduct these as a recurrence

•  Work: T(N) = O(n) + 2T(n/2)
•  Span: T(N) = O(n) + max(TL (n/2),TR(n/2))

•  This is the amount of time it will take to complete given
infinite processors

PARALLEL ANALYSIS
•  Consider work and span for MergeSort

•  Work is O(n log n)
•  Span is only O(n) – This is the final merge

•  We can conduct these as a recurrence

•  Work: T(N) = O(n) + 2T(n/2)
•  Span: T(N) = O(n) + max(TL (n/2),TR(n/2))

•  This is the amount of time it will take to complete given
infinite processors
•  What we care about emperically is speed up

PARALLEL ANALYSIS
•  Speed up

•  Speed up is the time it takes to complete the work
sequentially divided by the time it takes to do the work on
P processors

•  If we have four processors and the work takes 1/4 as long,
then our speed up is 4.

PARALLEL ANALYSIS
•  Speed up

•  Speed up is the time it takes to complete the work
sequentially divided by the time it takes to do the work on
P processors

•  If we have four processors and the work takes 1/4 as long,
then our speed up is 4.

•  If the speed up is equal to P, then we have perfect linear
speed up

PARALLEL ANALYSIS
•  Speed up

•  Speed up is the time it takes to complete the work
sequentially divided by the time it takes to do the work on
P processors

•  If we have four processors and the work takes 1/4 as long,
then our speed up is 4.

•  If the speed up is equal to P, then we have perfect linear
speed up

•  However, there is overhead in allocating new threads, and
this makes speed up difficult

PARALLEL ANALYSIS
•  Speed up

•  Speed up is the time it takes to complete the work
sequentially divided by the time it takes to do the work on
P processors

•  If we have four processors and the work takes 1/4 as long,
then our speed up is 4.

•  If the speed up is equal to P, then we have perfect linear
speed up

•  However, there is overhead in allocating new threads, and
this makes speed up difficult

•  The theoretical parallelism level is how long the
computation would take given infinite processors

PARALLEL ANALYSIS
•  Infinite processors

•  Let Tn be the computation time for the problem with n
processors and let Tinf be the span

•  Since this is an unrealistic assumption, we can find the
lower bound for our operations given p processors

•  Tp is lower bounded by T1/P + Tinf

•  This is where each processor does 1/Pth of the work, but
we must also take into account the maximum
dependency path

•  Consider finding an element in a BST in parallel

PARALLEL ANALYSIS
•  Parallel BST find

PARALLEL ANALYSIS
•  Parallel BST find

•  What is the work()? What is the analysis of this problem
when T1 and we only have one processor

•  What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

PARALLEL ANALYSIS
•  Parallel BST find

•  What is the work()? What is the analysis of this problem
when T1 and we only have one processor

•  What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

•  They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

PARALLEL ANALYSIS
•  Parallel BST find

•  What is the work()? What is the analysis of this problem
when T1 and we only have one processor

•  What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

•  They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

•  What if the problem was changed to finding an object in an
arbitrary non-search tree?

PARALLEL ANALYSIS
•  Parallel BST find

•  What is the work()? What is the analysis of this problem
when T1 and we only have one processor

•  What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

•  They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

•  What if the problem was changed to finding an object in an
arbitrary non-search tree?

•  Work?
•  Span?

PARALLEL ANALYSIS
•  Parallel BST find

•  What is the work()? What is the analysis of this problem
when T1 and we only have one processor

•  What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

•  They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

•  What if the problem was changed to finding an object in an
arbitrary non-search tree?

•  Work? O(n) need to check all nodes
•  Span?

PARALLEL ANALYSIS
•  Parallel BST find

•  What is the work()? What is the analysis of this problem
when T1 and we only have one processor

•  What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

•  They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

•  What if the problem was changed to finding an object in an
arbitrary non-search tree?

•  Work? O(n) need to check all nodes
•  Span? What is the longest dependency chain?

PARALLEL ANALYSIS
•  Parallel BST find

•  What is the work()? What is the analysis of this problem
when T1 and we only have one processor

•  What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

•  They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

•  What if the problem was changed to finding an object in an
arbitrary non-search tree?

•  Work? O(n) need to check all nodes
•  Span? O(height)

PARALLEL ANALYSIS
•  Parallel BST find

•  What is the work()? What is the analysis of this problem
when T1 and we only have one processor

•  What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

•  They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

•  What if the problem was changed to finding an object in an
arbitrary non-search tree?

•  Work? O(n) need to check all nodes
•  Span? O(height) – again this illustrates why linked lists

may be poor data structures for parallelization

RECURSIVE TASKS
•  Merge sort

RECURSIVE TASKS
•  Merge sort

•  What is the work?

RECURSIVE TASKS
•  Merge sort

•  What is the work? (Standard sequential O(n lg n))

RECURSIVE TASKS
•  Merge sort

•  What is the work? (Standard sequential O(n lg n))
•  What is the span?

RECURSIVE TASKS
•  Merge sort

•  What is the work? (Standard sequential O(n lg n))
•  What is the span?

•  Break it down into a recurrence!

RECURSIVE TASKS
•  Merge sort

•  What is the work? (Standard sequential O(n lg n))
•  What is the span?

•  Break it down into a recurrence!
•  T(n) = O(n) + 2T(N/2)

RECURSIVE TASKS
•  Merge sort

•  What is the work? (Standard sequential O(n lg n))
•  What is the span?

•  Break it down into a recurrence!
•  T(n) = O(n) + 2T(N/2)
•  T(n) = O(n) + max(T(left), T(right))

RECURSIVE TASKS
•  Merge sort

•  What is the work? (Standard sequential O(n lg n))
•  What is the span?

•  Break it down into a recurrence!
•  T(n) = O(n) + 2T(N/2)
•  T(n) = O(n) + max(T(left), T(right))

•  ß important distinction for merge sort

RECURSIVE TASKS
•  Merge sort

•  What is the work? (Standard sequential O(n lg n))
•  What is the span?

•  Break it down into a recurrence!
•  T(n) = O(n) + 2T(N/2)
•  T(n) = O(n) + max(T(left), T(right))

•  ß important distinction for merge sort
•  Span then is O(n)

PARALLEL ANALYSIS
•  Data storage

PARALLEL ANALYSIS
•  Data storage

•  Parallel operations don’t have to work only on arrays, they
can work on other data structures as well, but they don’t
always give a benefit

PARALLEL ANALYSIS
•  Data storage

•  Parallel operations don’t have to work only on arrays, they
can work on other data structures as well, but they don’t
always give a benefit

•  Why might we not want to parallelize a process over a
linked list?

PARALLEL ANALYSIS
•  Data storage

•  Parallel operations don’t have to work only on arrays, they
can work on other data structures as well, but they don’t
always give a benefit

•  Why might we not want to parallelize a process over a
linked list?

•  Difficult to break the problem into parts of equal size

PARALLEL ANALYSIS
•  Data storage

•  Parallel operations don’t have to work only on arrays, they
can work on other data structures as well, but they don’t
always give a benefit

•  Why might we not want to parallelize a process over a
linked list?

•  Difficult to break the problem into parts of equal size
•  Exception, if creating a new thread is has lower overhead

than the function being performed, i.e. if we are “mapping”
a difficult problem onto the result.

COMMON PARALLEL
PROBLEMS
•  There are two simple “parallelizable”

problems that we want to introduce

COMMON PARALLEL
PROBLEMS
•  There are two simple “parallelizable”

problems that we want to introduce
•  Reduction:

•  The input is an array of data
•  The output is some single characteristic of the whole data
•  Examples: Max, sum, contains, count, is-sorted

COMMON PARALLEL
PROBLEMS
•  There are two simple “parallelizable”

problems that we want to introduce
•  Reduction:

•  The input is an array of data
•  The output is some single characteristic of the whole data
•  Examples: Max, sum, contains, count, is-sorted

•  Map
•  The input is an array of data
•  The output is an array of the same length where each

element has had the same function applied to it

COMMON PARALLEL
PROBLEMS
•  These are two of what are called parallel

primitives
•  They are operations that can be applied to solve parallel

problems

COMMON PARALLEL
PROBLEMS
•  These are two of what are called parallel

primitives
•  They are operations that can be applied to solve parallel

problems
•  Many of the things that we’ll look at will simply be

combinations of these two primitives

COMMON PARALLEL
PROBLEMS
•  These are two of what are called parallel

primitives
•  They are operations that can be applied to solve parallel

problems
•  Many of the things that we’ll look at will simply be

combinations of these two primitives
•  How would we solve a problem to count primes between

two values?

COMMON PARALLEL
PROBLEMS
•  These are two of what are called parallel

primitives
•  They are operations that can be applied to solve parallel

problems
•  Many of the things that we’ll look at will simply be

combinations of these two primitives
•  How would we solve a problem to count primes between

two values?
•  Fundamentally, it is a reduction, summing the primes, but it

is also a mapping of a function which returns 1 if the
number is a prime and 0 otherwise

EXAMPLE PROBLEMS
•  Coding can be difficult

EXAMPLE PROBLEMS
•  Coding can be difficult

•  Let’s look through some code which implements the java
interfaces and get you some practice

•  Find the second smallest element in an array?

EXAMPLE PROBLEMS
•  Coding can be difficult

•  Let’s look through some code which implements the java
interfaces and get you some practice

•  Find the second smallest element in an array?
•  What are the immediate challenges?

EXAMPLE PROBLEMS
•  Coding can be difficult

•  Let’s look through some code which implements the java
interfaces and get you some practice

•  Find the second smallest element in an array?
•  What are the immediate challenges?
•  What does the recursive task need to return?

EXAMPLE PROBLEMS
•  Coding can be difficult

•  Let’s look through some code which implements the java
interfaces and get you some practice

•  Find the second smallest element in an array?
•  What are the immediate challenges?
•  What does the recursive task need to return?
•  How do we break up the data?

