CSE 332

JULY 26™ - PARALLELISM

FUNDAMENTALS

« Concurrency

FUNDAMENTALS

« Concurrency

« Even a single core can “do” multiple things at
once

FUNDAMENTALS

« Concurrency

« Even a single core can “do” multiple things at
once

* Processor swapping / Time-slicing

FUNDAMENTALS

« Concurrency

« Even a single core can “do” multiple things at
once
* Processor swapping / Time-slicing
* Parallelism

* Breaking the problem into smaller pieces that
can be done at once

FUNDAMENTALS

« Concurrency
« Even a single core can “do” multiple things at
once
* Processor swapping / Time-slicing
« Parallelism
* Breaking the problem into smaller pieces that
can be done at once
« Born-on-the-14% problem

FUNDAMENTALS

« Synchronization

FUNDAMENTALS

« Synchronization

» Dealing with shared resources between
threads

FUNDAMENTALS

« Synchronization

» Dealing with shared resources between
threads

« Mutating a single piece of memory

FUNDAMENTALS

« Synchronization
» Dealing with shared resources between
threads
« Mutating a single piece of memory

* Write-locking: remember sum++ is actually a
three operation call and how it's ordered with
other operations makes a difference

FUNDAMENTALS

* Threads v. Processes

FUNDAMENTALS

* Threads v. Processes

* |In a standard OS course, you might consider
forking a new process when you try and start
a new program

FUNDAMENTALS

* Threads v. Processes

* |In a standard OS course, you might consider
forking a new process when you try and start
a new program

* Threads work over the same shared memory

FUNDAMENTALS

* Threads v. Processes

* |In a standard OS course, you might consider
forking a new process when you try and start
a new program

* Threads work over the same shared memory

 Each thread has its own calls stack and
program counter

FUNDAMENTALS

* Threads v. Processes

* |In a standard OS course, you might consider
forking a new process when you try and start
a new program

* Threads work over the same shared memory

 Each thread has its own calls stack and
program counter

« Can modify freely information in the heap
(memory allocated when you call new)

FUNDAMENTALS

* Forking and Joining

FUNDAMENTALS

* Forking and Joining

* Fork(): Creates a new thread and begins work

FUNDAMENTALS

* Forking and Joining

* Fork(): Creates a new thread and begins work

« Join(): Tells the current thread to wait for the
result of a thread it has created

FUNDAMENTALS

* Forking and Joining

* Fork(): Creates a new thread and begins work

« Join(): Tells the current thread to wait for the
result of a thread it has created

 Example

FUNDAMENTALS

* Forking and Joining

* Fork(): Creates a new thread and begins work

« Join(): Tells the current thread to wait for the
result of a thread it has created
 Example
RecursiveTask left = new RecursiveTask(*lefthalf*\)
RecursiveTask right = new RecursiveTast(\Righthalf\)
left.fork()
result = right.compute/()

return combine(left.join,result)

FUNDAMENTALS

* Forking and Joining

* Fork(): Creates a new thread and begins work

« Join(): Tells the current thread to wait for the
result of a thread it has created
 Example (Why do it this way?)
RecursiveTask left = new RecursiveTask(*lefthalf*\)
RecursiveTask right = new RecursiveTast(\Righthalf\)
left.fork()
result = right.compute/()

return combine(left.join,result)

RECURSIVE TASKS

« Basic ideas for good parallel compute
functions

When given a job, a RecursiveTask is also required to start
other recursive tasks.

So, the compute function needs to divide the work and
create new RecursiveTask objects to do smaller portions of
the work.

Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

Creating a new thread takes time!
Then, we just need to join together all of their tasks
The master thread should also do some work

PARALLEL ANALYSIS

« How do we analyze parallel programs?

PARALLEL ANALYSIS

« How do we analyze parallel programs?

* They do the same amount of work overall, but since they
can do multiple things at once, the overall time to
completion may be different.

- We can recognize this difference using work and span

PARALLEL ANALYSIS

« How do we analyze parallel programs?

* They do the same amount of work overall, but since they
can do multiple things at once, the overall time to
completion may be different.

- We can recognize this difference using work and span

« Work is the total amount of work that needs to be done in
the problem (standard sequential computations)

PARALLEL ANALYSIS

« How do we analyze parallel programs?

* They do the same amount of work overall, but since they
can do multiple things at once, the overall time to
completion may be different.

- We can recognize this difference using work and span

« Work is the total amount of work that needs to be done in
the problem (standard sequential computations)

- Span is the largest amount of work some processor must
complete

PARALLEL ANALYSIS

« How do we analyze parallel programs?

* They do the same amount of work overall, but since they
can do multiple things at once, the overall time to
completion may be different.

- We can recognize this difference using work and span

« Work is the total amount of work that needs to be done in
the problem (standard sequential computations)

- Span is the largest amount of work some processor must
complete (this assumes we have infinite processors)

PARALLEL ANALYSIS

« Consider work and span for MergeSort

PARALLEL ANALYSIS

« Consider work and span for MergeSort
 Work is O(n log n)

PARALLEL ANALYSIS

« Consider work and span for MergeSort

* Work is O(n log n)
« Spanis only O(n) --

PARALLEL ANALYSIS

« Consider work and span for MergeSort

* Work is O(n log n)
Span is only O(n) — This is the final merge
« We can conduct these as a recurrence

PARALLEL ANALYSIS

« Consider work and span for MergeSort

* Work is O(n log n)
Span is only O(n) — This is the final merge
« We can conduct these as a recurrence

« Work: T(N) = O(n) + 2T(n/2)

PARALLEL ANALYSIS

« Consider work and span for MergeSort
* Work is O(n log n)
« Spanis only O(n) — This is the final merge
 We can conduct these as a recurrence
* Work: T(N) = O(n) + 2T(n/2)
« Span: T(N) = O(n) + max(T, (n/2),Tg(n/2))

PARALLEL ANALYSIS

« Consider work and span for MergeSort

* Work is O(n log n)

« Spanis only O(n) — This is the final merge
« We can conduct these as a recurrence

* Work: T(N) = O(n) + 2T(n/2)

« Span: T(N) = O(n) + max(T, (n/2),Tg(n/2))

* This is the amount of time it will take to complete given
infinite processors

PARALLEL ANALYSIS

« Consider work and span for MergeSort
* Work is O(n log n)
« Spanis only O(n) — This is the final merge
 We can conduct these as a recurrence
* Work: T(N) = O(n) + 2T(n/2)
« Span: T(N) = O(n) + max(T, (n/2),Tg(n/2))

* This is the amount of time it will take to complete given
infinite processors

- What we care about emperically is speed up

PARALLEL ANALYSIS

« Speed up

« Speed up is the time it takes to complete the work

sequentially divided by the time it takes to do the work on
P processors

- |f we have four processors and the work takes 1/4 as long,
then our speed up is 4.

PARALLEL ANALYSIS

« Speed up

« Speed up is the time it takes to complete the work
sequentially divided by the time it takes to do the work on
P processors

- |f we have four processors and the work takes 1/4 as long,
then our speed up is 4.

« If the speed up is equal to P, then we have perfect linear
speed up

PARALLEL ANALYSIS

« Speed up

« Speed up is the time it takes to complete the work

sequentially divided by the time it takes to do the work on
P processors

- |f we have four processors and the work takes 1/4 as long,
then our speed up is 4.

« If the speed up is equal to P, then we have perfect linear
speed up

- However, there is overhead in allocating new threads, and
this makes speed up difficult

PARALLEL ANALYSIS

« Speed up

Speed up is the time it takes to complete the work
sequentially divided by the time it takes to do the work on
P processors

If we have four processors and the work takes 1/4 as long,
then our speed up is 4.

If the speed up is equal to P, then we have perfect linear
speed up

However, there is overhead in allocating new threads, and
this makes speed up difficult

The theoretical parallelism level is how long the
computation would take given infinite processors

PARALLEL ANALYSIS

* Infinite processors

Let T, be the computation time for the problem with n
processors and let T, - be the span

inf
Since this is an unrealistic assumption, we can find the
lower bound for our operations given p processors

Tp is lower bounded by T,/P + T ;

This is where each processor does 1/Pth of the work, but
we must also take into account the maximum
dependency path

Consider finding an element in a BST in parallel

PARALLEL ANALYSIS

 Parallel BST find

PARALLEL ANALYSIS

 Parallel BST find

« What is the work()? What is the analysis of this problem
when T, and we only have one processor

- What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

PARALLEL ANALYSIS

 Parallel BST find

« What is the work()? What is the analysis of this problem
when T, and we only have one processor

- What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

« They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

PARALLEL ANALYSIS

 Parallel BST find

« What is the work()? What is the analysis of this problem
when T, and we only have one processor

- What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

« They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

« What if the problem was changed to finding an object in an
arbitrary non-search tree?

PARALLEL ANALYSIS

 Parallel BST find

« What is the work()? What is the analysis of this problem
when T, and we only have one processor

- What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

« They are both O(height), creating a new thread for both

subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

« What if the problem was changed to finding an object in an
arbitrary non-search tree?
Work?

Span?

PARALLEL ANALYSIS

 Parallel BST find

« What is the work()? What is the analysis of this problem
when T, and we only have one processor

- What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

« They are both O(height), creating a new thread for both

subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

« What if the problem was changed to finding an object in an
arbitrary non-search tree?
Work? O(n) need to check all nodes
Span?

PARALLEL ANALYSIS

 Parallel BST find

« What is the work()? What is the analysis of this problem
when T, and we only have one processor

- What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

« They are both O(height), creating a new thread for both

subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

« What if the problem was changed to finding an object in an
arbitrary non-search tree?
Work? O(n) need to check all nodes
Span? What is the longest dependency chain?

PARALLEL ANALYSIS

 Parallel BST find

« What is the work()? What is the analysis of this problem
when T, and we only have one processor

- What is the span()? What is the analysis of this work
considering we have an infinite number of processors?

« They are both O(height), creating a new thread for both
subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

« What if the problem was changed to finding an object in an
arbitrary non-search tree?
Work? O(n) need to check all nodes
Span? O(height)

PARALLEL ANALYSIS

 Parallel BST find

« What is the work()? What is the analysis of this problem
when T, and we only have one processor

- What is the span()? What is the analysis of this work
considering we have an infinite number of processors?
« They are both O(height), creating a new thread for both

subtrees is pointless, we can eliminate a subtree at each
level with a single comparsion

« What if the problem was changed to finding an object in an
arbitrary non-search tree?
Work? O(n) need to check all nodes

Span? O(height) — again this illustrates why linked lists
may be poor data structures for parallelization

RECURSIVE TASKS

* Merge sort

RECURSIVE TASKS

* Merge sort
 What is the work?

RECURSIVE TASKS

* Merge sort
- What is the work? (Standard sequential O(n Ig n))

RECURSIVE TASKS

* Merge sort

- What is the work? (Standard sequential O(n Ig n))
What is the span?

RECURSIVE TASKS

* Merge sort

- What is the work? (Standard sequential O(n Ig n))

What is the span?
Break it down into a recurrence!

RECURSIVE TASKS

* Merge sort

- What is the work? (Standard sequential O(n Ig n))

What is the span?
Break it down into a recurrence!

* T(n)=0(n)+ 2T(N/2)

RECURSIVE TASKS

* Merge sort

- What is the work? (Standard sequential O(n Ig n))

What is the span?
Break it down into a recurrence!

« T(n)=0(n) + 2T(N/2)
« T(n) = O(n) + max(T(left), T(right))

RECURSIVE TASKS

* Merge sort

What is the work? (Standard sequential O(n Ig n))

What is the span?
Break it down into a recurrence!

T(n) = O(n) + 2T(N/2)
T(n) = O(n) + max(T(left), T(right))
< important distinction for merge sort

RECURSIVE TASKS

* Merge sort

- What is the work? (Standard sequential O(n Ig n))

What is the span?
Break it down into a recurrence!

* T(n)=0(n) + 2T(N/2)
« T(n) = O(n) + max(T(left), T(right))

< important distinction for merge sort
« Span then is O(n)

PARALLEL ANALYSIS

« Data storage

PARALLEL ANALYSIS

« Data storage

Parallel operations don’t have to work only on arrays, they
can work on other data structures as well, but they don’t
always give a benefit

PARALLEL ANALYSIS

« Data storage

- Parallel operations don’t have to work only on arrays, they
can work on other data structures as well, but they don’t

always give a benefit
* Why might we not want to parallelize a process over a
linked list?

PARALLEL ANALYSIS

« Data storage

- Parallel operations don’t have to work only on arrays, they
can work on other data structures as well, but they don’t
always give a benefit

* Why might we not want to parallelize a process over a
linked list?

 Difficult to break the problem into parts of equal size

PARALLEL ANALYSIS

« Data storage

- Parallel operations don’t have to work only on arrays, they
can work on other data structures as well, but they don’t
always give a benefit

* Why might we not want to parallelize a process over a
linked list?

 Difficult to break the problem into parts of equal size

- Exception, if creating a new thread is has lower overhead

than the function being performed, i.e. if we are “mapping”
a difficult problem onto the resuilt.

COMMON PARALLEL
PROBLEMS

 There are two simple “parallelizable”
problems that we want to introduce

COMMON PARALLEL
PROBLEMS

 There are two simple “parallelizable”
problems that we want to introduce

Reduction:
The input is an array of data
The output is some single characteristic of the whole data
Examples: Max, sum, contains, count, is-sorted

COMMON PARALLEL
PROBLEMS

 There are two simple “parallelizable”
problems that we want to introduce

- Reduction:
* The input is an array of data
* The output is some single characteristic of the whole data
« Examples: Max, sum, contains, count, is-sorted
- Map
* The input is an array of data

« The output is an array of the same length where each
element has had the same function applied to it

COMMON PARALLEL
PROBLEMS

 These are two of what are called parallel
primitives

« They are operations that can be applied to solve parallel
problems

COMMON PARALLEL
PROBLEMS

 These are two of what are called parallel
primitives
« They are operations that can be applied to solve parallel
problems

Many of the things that we’'ll look at will simply be
combinations of these two primitives

COMMON PARALLEL
PROBLEMS

 These are two of what are called parallel
primitives
« They are operations that can be applied to solve parallel
problems

- Many of the things that we'll look at will simply be
combinations of these two primitives

 How would we solve a problem to count primes between
two values?

COMMON PARALLEL
PROBLEMS

 These are two of what are called parallel
primitives
« They are operations that can be applied to solve parallel
problems

- Many of the things that we'll look at will simply be
combinations of these two primitives

 How would we solve a problem to count primes between
two values?

* Fundamentally, it is a reduction, summing the primes, but it
is also a mapping of a function which returns 1 if the
number is a prime and O otherwise

EXAMPLE PROBLEMS

« Coding can be difficult

EXAMPLE PROBLEMS

« Coding can be difficult

» Let’s look through some code which implements the java
interfaces and get you some practice

* Find the second smallest element in an array?

EXAMPLE PROBLEMS

« Coding can be difficult

» Let’s look through some code which implements the java
interfaces and get you some practice

* Find the second smallest element in an array?

« What are the immediate challenges?

EXAMPLE PROBLEMS

« Coding can be difficult

» Let’s look through some code which implements the java
interfaces and get you some practice

* Find the second smallest element in an array?

« What are the immediate challenges?
- What does the recursive task need to return?

EXAMPLE PROBLEMS

« Coding can be difficult
» Let’s look through some code which implements the java
interfaces and get you some practice
* Find the second smallest element in an array?

« What are the immediate challenges?
« What does the recursive task need to return?
 How do we break up the data?

