
CSE 332
JULY 24TH –INTRO TO PARALLELISM

PARALLELISM
•  Just like B-trees and memory, processors do

not work exactly like we assume they do

PARALLELISM
•  Just like B-trees and memory, processors do

not work exactly like we assume they do
•  New processors “speed up” not by increasing

the clock speed, but by increasing the
number of cores available for processing

PARALLELISM
•  Just like B-trees and memory, processors do

not work exactly like we assume they do
•  New processors “speed up” not by increasing

the clock speed, but by increasing the
number of cores available for processing

•  Multiple things can be calculated at once

PARALLELISM
•  Just like B-trees and memory, processors do

not work exactly like we assume they do
•  New processors “speed up” not by increasing

the clock speed, but by increasing the
number of cores available for processing

•  Multiple things can be calculated at once
•  There are limitations to this, but we can

formalize and understand them

PARALLELISM
•  Three main factors are going to impact our

ability to parallelize:

PARALLELISM
•  Three main factors are going to impact our

ability to parallelize:
•  Synchronization:

PARALLELISM
•  Three main factors are going to impact our

ability to parallelize:
•  Synchronization: How can we time our

multiple operations so that they are actually
running in unison

PARALLELISM
•  Three main factors are going to impact our

ability to parallelize:
•  Synchronization: How can we time our

multiple operations so that they are actually
running in unison

•  Algorithm design:

PARALLELISM
•  Three main factors are going to impact our

ability to parallelize:
•  Synchronization: How can we time our

multiple operations so that they are actually
running in unison

•  Algorithm design: Do we need to change our
algorithmic approach so that it can be
parallelized

PARALLELISM
•  Three main factors are going to impact our

ability to parallelize:
•  Synchronization: How can we time our

multiple operations so that they are actually
running in unison

•  Algorithm design: Do we need to change our
algorithmic approach so that it can be
parallelized

•  Concurrent access:

PARALLELISM
•  Three main factors are going to impact our

ability to parallelize:
•  Synchronization: How can we time our

multiple operations so that they are actually
running in unison

•  Algorithm design: Do we need to change our
algorithmic approach so that it can be
parallelized

•  Concurrent access: Do we need to modify
data structures so they can be safely
accessed

PARALLELISM
•  Concurrency

PARALLELISM
•  Concurrency

•  Your computer does multiple things at once

PARALLELISM
•  Concurrency

•  Your computer does multiple things at once
•  Even when just on one core

PARALLELISM
•  Concurrency

•  Your computer does multiple things at once
•  Even when just on one core
•  Running one program does not prohibit you

from starting another

PARALLELISM
•  Concurrency

•  Your computer does multiple things at once
•  Even when just on one core
•  Running one program does not prohibit you

from starting another
•  Key here becomes how these programs

share hardware resources

PARALLELISM
•  Concurrency

•  Your computer does multiple things at once
•  Even when just on one core
•  Running one program does not prohibit you

from starting another
•  Key here becomes how these programs

share hardware resources
•  Need to moderate access to memory and

CPU process time

PARALLELISM
•  Parallelism

PARALLELISM
•  Parallelism

•  Break the work of a single problem down so that
it can be completed by many smaller agents

PARALLELISM
•  Parallelism

•  Break the work of a single problem down so that
it can be completed by many smaller agents

•  How many students in this class were born on
the 14th of their month?

PARALLELISM
•  Parallelism

•  Break the work of a single problem down so that
it can be completed by many smaller agents

•  How many students in this class were born on
the 14th of their month?

•  Two approaches:

PARALLELISM
•  Parallelism

•  Break the work of a single problem down so that
it can be completed by many smaller agents

•  How many students in this class were born on
the 14th of their month?

•  Two approaches:
•  Poll each student and keep a counter

PARALLELISM
•  Parallelism

•  Break the work of a single problem down so that
it can be completed by many smaller agents

•  How many students in this class were born on
the 14th of their month?

•  Two approaches:
•  Poll each student and keep a counter
•  Find a way for students to talk to each

other and communicate back to the
main thread

PARALLELISM
•  Synchronization

•  What if each student tries to modify the “master
record”?

PARALLELISM
•  Synchronization

•  What if each student tries to modify the “master
record”?

•  What is the process involved in a computer?

PARALLELISM
•  Synchronization

•  What if each student tries to modify the “master
record”?

•  What is the process involved in a computer?
•  If you increase by count++, what does this

entail?

PARALLELISM
•  Synchronization

•  What if each student tries to modify the “master
record”?

•  What is the process involved in a computer?
•  If you increase by count++, what does this

entail?
•  A read, a calculation and then a write

PARALLELISM
•  Synchronization

•  What if each student tries to modify the “master
record”?

•  What is the process involved in a computer?
•  If you increase by count++, what does this

entail?
•  A read, a calculation and then a write
•  If someone writes between your read and write,

the data will be incorrect!

PARALLELISM
•  Synchronization

•  What if each student tries to modify the “master
record”?

•  What is the process involved in a computer?
•  If you increase by count++, what does this

entail?
•  A read, a calculation and then a write
•  If someone writes between your read and write,

the data will be incorrect!
•  Need to “lock” that resource so that only you can

modify it for that timeframe

PARALLELISM
•  These are both concurrent approaches

PARALLELISM
•  These are both concurrent approaches

•  Parallelism: Have each thread perform a portion
of the task (with exclusive access to their piece
of memory)

PARALLELISM
•  These are both concurrent approaches

•  Parallelism: Have each thread perform a portion
of the task (with exclusive access to their piece
of memory)

•  Synchronization: Have multiple threads work
over the same piece of data

PARALLELISM
•  These are both concurrent approaches

•  Parallelism: Have each thread perform a portion
of the task (with exclusive access to their piece
of memory)

•  Synchronization: Have multiple threads work
over the same piece of data

•  Can be both! Consider matrix multiplication

PARALLELISM
•  Great to consider, but how do we actually go

about producing parallelism

PARALLELISM
•  Great to consider, but how do we actually go

about producing parallelism
•  Start a new process through the OS

PARALLELISM
•  Great to consider, but how do we actually go

about producing parallelism
•  Start a new process through the OS

•  This allocates new memory and a new program
stack, so data can’t easily be shared

PARALLELISM
•  Great to consider, but how do we actually go

about producing parallelism
•  Start a new process through the OS

•  This allocates new memory and a new program
stack, so data can’t easily be shared

•  Create a new “thread” on the current process

PARALLELISM
•  Great to consider, but how do we actually go

about producing parallelism
•  Start a new process through the OS

•  This allocates new memory and a new program
stack, so data can’t easily be shared

•  Create a new “thread” on the current process
•  Runs over the same memory

PARALLELISM
•  Threads are usually more efficient because

of the ease with which they can
communicate information with each other

PARALLELISM
•  Threads are usually more efficient because

of the ease with which they can
communicate information with each other
•  How do we make and moderate threads?

PARALLELISM
•  Threads are usually more efficient because

of the ease with which they can
communicate information with each other
•  How do we make and moderate threads?
•  ForkJoin infrastructure:

PARALLELISM
•  Threads are usually more efficient because

of the ease with which they can
communicate information with each other
•  How do we make and moderate threads?
•  ForkJoin infrastructure:

•  Fork(): creates a new thread and returns which of the two
threads the current execution runs on

PARALLELISM
•  Threads are usually more efficient because

of the ease with which they can
communicate information with each other
•  How do we make and moderate threads?
•  ForkJoin infrastructure:

•  Fork(): creates a new thread and returns which of the two
threads the current execution runs on

•  Join(): waits for the other thread to finish execution and
return data (when the thread has finished its task)

PARALLELISM
•  ForkJoin threads implement the
RecursiveTask object and come from the
ForkJoinPool infrastructure.

PARALLELISM
•  ForkJoin threads implement the
RecursiveTask object and come from the
ForkJoinPool infrastructure.
•  On Monday, we will begin looking at how this actually looks

in code

PARALLELISM
•  Creating new threads takes time and

overhead

PARALLELISM
•  Creating new threads takes time and

overhead
•  Two important solutions:

PARALLELISM
•  Creating new threads takes time and

overhead
•  Two important solutions:

•  Parallelize the parallelization process

PARALLELISM
•  Creating new threads takes time and

overhead
•  Two important solutions:

•  Parallelize the parallelization process
•  I’m So Meta Even This Acronym

PARALLELISM
•  Creating new threads takes time and

overhead
•  Two important solutions:

•  Parallelize the parallelization process
•  I’m So Meta Even This Acronym

PARALLELISM
•  Creating new threads takes time and

overhead
•  Two important solutions:

•  Parallelize the parallelization process
•  I’m So Meta Even This Acronym
•  Once the problem is small enough, we want to use

sequential approach. Cutoffs are very important

PARALLELISM
•  Parallelize the parallelization process

PARALLELISM
•  Parallelize the parallelization process

•  The “master” thread could allocate all of the other threads
on its own and at once

PARALLELISM
•  Parallelize the parallelization process

•  The “master” thread could allocate all of the other threads
on its own and at once

•  This takes time and isn’t very parallel!

PARALLELISM
•  Parallelize the parallelization process

•  The “master” thread could allocate all of the other threads
on its own and at once

•  This takes time and isn’t very parallel!
•  In Java, these parallel tasks must use the same code

PARALLELISM
•  Parallelize the parallelization process

•  The “master” thread could allocate all of the other threads
on its own and at once

•  This takes time and isn’t very parallel!
•  In Java, these parallel tasks must use the same code

•  If a thread is created,

PARALLELISM
•  Parallelize the parallelization process

•  The “master” thread could allocate all of the other threads
on its own and at once

•  This takes time and isn’t very parallel!
•  In Java, these parallel tasks must use the same code

•  If a thread is created,
•  Check to see if my work is below the cutoff, if so,

perform the work

PARALLELISM
•  Parallelize the parallelization process

•  The “master” thread could allocate all of the other threads
on its own and at once

•  This takes time and isn’t very parallel!
•  In Java, these parallel tasks must use the same code

•  If a thread is created,
•  Check to see if my work is below the cutoff, if so,

perform the work
•  If not, divide the work in half and issue a new thread

for each

PARALLELISM
•  Parallelize the parallelization process

•  The “master” thread could allocate all of the other threads
on its own and at once

•  This takes time and isn’t very parallel!
•  In Java, these parallel tasks must use the same code

•  If a thread is created,
•  Check to see if my work is below the cutoff, if so,

perform the work
•  If not, divide the work in half and issue a new thread

for each
•  Issue a new thread to do one half, and then do the

other half yourself

PARALLELISM
•  Parallelize the parallelization process

•  The “master” thread could allocate all of the other threads
on its own and at once

•  This takes time and isn’t very parallel!
•  In Java, these parallel tasks must use the same code

•  If a thread is created,
•  Check to see if my work is below the cutoff, if so,

perform the work
•  If not, divide the work in half and issue a new thread

for each
•  Issue a new thread to do one half, and then do the

other half yourself
•  This will parallelize the thread creation process and limit

the number of threads that are waiting to be joined.

RECURSIVE TASKS
•  Parallelism in Java works around

RecursiveTask objects

RECURSIVE TASKS
•  Parallelism in Java works around

RecursiveTask objects
•  They have a constructor, which passes in all of the

relevant information needed to perform the work
•  Also, they have a function compute() which is where the

work is conducted

RECURSIVE TASKS
•  Parallelism in Java works around

RecursiveTask objects
•  They have a constructor, which passes in all of the

relevant information needed to perform the work
•  Also, they have a function compute() which is where the

work is conducted
•  Recursive Tasks have a generic type that is the type their

final compute should return

RECURSIVE TASKS
•  Parallelism in Java works around

RecursiveTask objects
•  They have a constructor, which passes in all of the

relevant information needed to perform the work
•  Also, they have a function compute() which is where the

work is conducted
•  Recursive Tasks have a generic type that is the type their

final compute should return
•  In order to start a parallel procedure, we create a

RecursiveTask that we’ve defined and then give it to the
ForkJoinPool using invoke(RecursiveTask)

RECURSIVE TASKS
public static final ForkJoinPool POOL = new ForkJoinPool();!

static class SumTask extends RecursiveTask<Long>{!

!long[] arr; int lo; int hi;!

!public SumTask(long [] arr, int lo, int hi){!

! !this. arr = arr; this.lo = lo; this.hi = hi;!

!}!

!protected long compute() {!

! !long result = 0;!

! !for(int i = lo; i<hi; i++){!

! ! !result += arr[i];!

! !}!

! !return result;!

!}!

public static long sum(long[] arr){!

!SumTask task = new SumTask(arr,0,arr.length;!

!POOL.invoke(task);!

}!

RECURSIVE TASKS
•  This implementation isn’t in parallel

•  We’ve created the pool and the task, but we’re only calling
it once, there aren’t any other threads being made.

•  We need to utilize fork() and join() to create parallel
threads.

RECURSIVE TASKS
•  This implementation isn’t in parallel

•  We’ve created the pool and the task, but we’re only calling
it once, there aren’t any other threads being made.

•  We need to utilize fork() and join() to create parallel
threads.

•  While we call POOL.invoke() to start the process, we use
task.fork() to recursively start a new thread which runs
compute() for a task.

•  When we call task.join(), we wait for that parallel process
to finish with its own work

RECURSIVE TASKS
•  This implementation isn’t in parallel

•  We’ve created the pool and the task, but we’re only calling
it once, there aren’t any other threads being made.

•  We need to utilize fork() and join() to create parallel
threads.

•  While we call POOL.invoke() to start the process, we use
task.fork() to recursively start a new thread which runs
compute() for a task.

•  When we call task.join(), we wait for that parallel process
to finish with its own work

RECURSIVE TASKS
•  Basic ideas for good parallel compute

functions

RECURSIVE TASKS
•  Basic ideas for good parallel compute

functions
•  When given a job, a RecursiveTask is also required to start

other recursive tasks.

RECURSIVE TASKS
•  Basic ideas for good parallel compute

functions
•  When given a job, a RecursiveTask is also required to start

other recursive tasks.
•  So, the compute function needs to divide the work and

create new RecursiveTask objects to do smaller portions of
the work.

RECURSIVE TASKS
•  Basic ideas for good parallel compute

functions
•  When given a job, a RecursiveTask is also required to start

other recursive tasks.
•  So, the compute function needs to divide the work and

create new RecursiveTask objects to do smaller portions of
the work.

•  Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

RECURSIVE TASKS
•  Basic ideas for good parallel compute

functions
•  When given a job, a RecursiveTask is also required to start

other recursive tasks.
•  So, the compute function needs to divide the work and

create new RecursiveTask objects to do smaller portions of
the work.

•  Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

•  Creating a new thread takes time!

RECURSIVE TASKS
•  Basic ideas for good parallel compute

functions
•  When given a job, a RecursiveTask is also required to start

other recursive tasks.
•  So, the compute function needs to divide the work and

create new RecursiveTask objects to do smaller portions of
the work.

•  Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

•  Creating a new thread takes time!
•  Then, we just need to join together all of their tasks

RECURSIVE TASKS
•  Basic ideas for good parallel compute

functions
•  When given a job, a RecursiveTask is also required to start

other recursive tasks.
•  So, the compute function needs to divide the work and

create new RecursiveTask objects to do smaller portions of
the work.

•  Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

•  Creating a new thread takes time!
•  Then, we just need to join together all of their tasks
•  The master thread should also do some work

NEXT CLASS
•  How do we implement this concept explicitly

in Java?

NEXT CLASS
•  How do we implement this concept explicitly

in Java?
•  What types of problems can be parallelized

easily?

NEXT CLASS
•  How do we implement this concept explicitly

in Java?
•  What types of problems can be parallelized

easily?
•  Are there common “parallel operations” that

can make solving this problem easier?

NEXT CLASS
•  How do we implement this concept explicitly

in Java?
•  What types of problems can be parallelized

easily?
•  Are there common “parallel operations” that

can make solving this problem easier?
•  How much faster can we actually get with

parallelism?

