CSE 332

JULY 24T™H _INTRO TO PARALLELISM

PARALLELISM

* Just like B-trees and memory, processors do
not work exactly like we assume they do

PARALLELISM

* Just like B-trees and memory, processors do
not work exactly like we assume they do

* New processors “speed up” not by increasing
the clock speed, but by increasing the
number of cores available for processing

PARALLELISM

* Just like B-trees and memory, processors do
not work exactly like we assume they do

* New processors “speed up” not by increasing
the clock speed, but by increasing the
number of cores available for processing

» Multiple things can be calculated at once

PARALLELISM

* Just like B-trees and memory, processors do
not work exactly like we assume they do

* New processors “speed up” not by increasing
the clock speed, but by increasing the
number of cores available for processing

» Multiple things can be calculated at once

 There are limitations to this, but we can
formalize and understand them

PARALLELISM

* Three main factors are going to impact our
ability to parallelize:

PARALLELISM

* Three main factors are going to impact our
ability to parallelize:

* Synchronization:

PARALLELISM

* Three main factors are going to impact our
ability to parallelize:

* Synchronization: How can we time our
multiple operations so that they are actually
running in unison

PARALLELISM

* Three main factors are going to impact our
ability to parallelize:

* Synchronization: How can we time our
multiple operations so that they are actually
running in unison

 Algorithm design:

PARALLELISM

* Three main factors are going to impact our
ability to parallelize:

* Synchronization: How can we time our
multiple operations so that they are actually
running in unison

 Algorithm design: Do we need to change our
algorithmic approach so that it can be
parallelized

PARALLELISM

* Three main factors are going to impact our
ability to parallelize:

* Synchronization: How can we time our
multiple operations so that they are actually
running in unison

 Algorithm design: Do we need to change our
algorithmic approach so that it can be
parallelized

 Concurrent access:

PARALLELISM

* Three main factors are going to impact our
ability to parallelize:

* Synchronization: How can we time our
multiple operations so that they are actually
running in unison

 Algorithm design: Do we need to change our
algorithmic approach so that it can be
parallelized

» Concurrent access: Do we need to modify
data structures so they can be safely
accessed

PARALLELISM

« Concurrency

PARALLELISM

« Concurrency

* Your computer does multiple things at once

PARALLELISM

« Concurrency

* Your computer does multiple things at once
* Even when just on one core

PARALLELISM

« Concurrency

* Your computer does multiple things at once
* Even when just on one core

* Running one program does not prohibit you
from starting another

PARALLELISM

« Concurrency

* Your computer does multiple things at once
* Even when just on one core

* Running one program does not prohibit you
from starting another

* Key here becomes how these programs
share hardware resources

PARALLELISM

« Concurrency

* Your computer does multiple things at once
* Even when just on one core

* Running one program does not prohibit you
from starting another
* Key here becomes how these programs
share hardware resources

* Need to moderate access to memory and
CPU process time

PARALLELISM

 Parallelism

PARALLELISM

 Parallelism

» Break the work of a single problem down so that
it can be completed by many smaller agents

PARALLELISM

* Parallelism
» Break the work of a single problem down so that
it can be completed by many smaller agents

* How many students in this class were born on
the 14t of their month?

PARALLELISM

* Parallelism
» Break the work of a single problem down so that
it can be completed by many smaller agents

* How many students in this class were born on
the 14t of their month?

* Two approaches:

PARALLELISM

* Parallelism
» Break the work of a single problem down so that
it can be completed by many smaller agents

* How many students in this class were born on
the 14t of their month?

* Two approaches:
* Poll each student and keep a counter

PARALLELISM

* Parallelism
» Break the work of a single problem down so that
it can be completed by many smaller agents

* How many students in this class were born on
the 14t of their month?

* Two approaches:
* Poll each student and keep a counter

* Find a way for students to talk to each
other and communicate back to the
main thread

PARALLELISM

« Synchronization

« What if each student tries to modify the “master
record”?

PARALLELISM

« Synchronization

« What if each student tries to modify the “master
record”?

* What is the process involved in a computer?

PARALLELISM

« Synchronization
« What if each student tries to modify the “master
record”?
* What is the process involved in a computer?

 If you increase by count++, what does this
entail?

PARALLELISM

« Synchronization

« What if each student tries to modify the “master
record”?
* What is the process involved in a computer?

 If you increase by count++, what does this
entail?

 Aread, a calculation and then a write

PARALLELISM

« Synchronization

What if each student tries to modify the “master
record”?

What is the process involved in a computer?

If you increase by count++, what does this
entail?

A read, a calculation and then a write

If someone writes between your read and write,
the data will be incorrect!

PARALLELISM

« Synchronization

What if each student tries to modify the “master
record”?

What is the process involved in a computer?

If you increase by count++, what does this
entail?

A read, a calculation and then a write

If someone writes between your read and write,
the data will be incorrect!

Need to “lock” that resource so that only you can
modify it for that timeframe

PARALLELISM

 These are both concurrent approaches

PARALLELISM

 These are both concurrent approaches

« Parallelism: Have each thread perform a portion
of the task (with exclusive access to their piece
of memory)

PARALLELISM

 These are both concurrent approaches

« Parallelism: Have each thread perform a portion
of the task (with exclusive access to their piece

of memory)

* Synchronization: Have multiple threads work
over the same piece of data

PARALLELISM

 These are both concurrent approaches

« Parallelism: Have each thread perform a portion
of the task (with exclusive access to their piece

of memory)

* Synchronization: Have multiple threads work
over the same piece of data

« Can be both! Consider matrix multiplication

PARALLELISM

* Great to consider, but how do we actually go
about producing parallelism

PARALLELISM

* Great to consider, but how do we actually go
about producing parallelism

- Start a new process through the OS

PARALLELISM

* Great to consider, but how do we actually go
about producing parallelism

- Start a new process through the OS

« This allocates new memory and a new program
stack, so data can't easily be shared

PARALLELISM

* Great to consider, but how do we actually go
about producing parallelism

- Start a new process through the OS

« This allocates new memory and a new program
stack, so data can't easily be shared

« Create a new “thread” on the current process

PARALLELISM

* Great to consider, but how do we actually go
about producing parallelism

- Start a new process through the OS

« This allocates new memory and a new program
stack, so data can't easily be shared

« Create a new “thread” on the current process
* Runs over the same memory

PARALLELISM

 Threads are usually more efficient because
of the ease with which they can
communicate information with each other

PARALLELISM

 Threads are usually more efficient because
of the ease with which they can
communicate information with each other

« How do we make and moderate threads?

PARALLELISM

 Threads are usually more efficient because
of the ease with which they can
communicate information with each other

« How do we make and moderate threads?
* ForkJoin infrastructure:

PARALLELISM

 Threads are usually more efficient because
of the ease with which they can
communicate information with each other

« How do we make and moderate threads?

* ForkJoin infrastructure:

Fork(): creates a new thread and returns which of the two
threads the current execution runs on

PARALLELISM

 Threads are usually more efficient because
of the ease with which they can
communicate information with each other

« How do we make and moderate threads?

* ForkJoin infrastructure:

Fork(): creates a new thread and returns which of the two
threads the current execution runs on

Join(): waits for the other thread to finish execution and
return data (when the thread has finished its task)

PARALLELISM

* ForkJoin threads implement the
RecursiveTask object and come from the
ForkJoinPool infrastructure.

PARALLELISM

* ForkJoin threads implement the
RecursiveTask object and come from the
ForkJoinPool infrastructure.

- On Monday, we will begin looking at how this actually looks
in code

PARALLELISM

« Creating new threads takes time and
overhead

PARALLELISM

« Creating new threads takes time and
overhead

« Two important solutions:

PARALLELISM

« Creating new threads takes time and
overhead

« Two important solutions:
Parallelize the parallelization process

PARALLELISM

« Creating new threads takes time and
overhead
« Two important solutions:

Parallelize the parallelization process
I'm So Meta Even This Acronym

PARALLELISM

« Creating new threads takes time and
overhead
« Two important solutions:

Parallelize the parallelization process
I’m So Meta Even This Acronym

PARALLELISM

« Creating new threads takes time and
overhead

« Two important solutions:
« Parallelize the parallelization process
* I’m So Meta Even This Acronym

* Once the problem is small enough, we want to use
sequential approach. Cutoffs are very important

PARALLELISM

« Parallelize the parallelization process

PARALLELISM

« Parallelize the parallelization process

The “master” thread could allocate all of the other threads
on its own and at once

PARALLELISM

« Parallelize the parallelization process

The “master” thread could allocate all of the other threads
on its own and at once

This takes time and isn’t very parallel!

PARALLELISM

« Parallelize the parallelization process

The “master” thread could allocate all of the other threads
on its own and at once

This takes time and isn’t very parallel!
* In Java, these parallel tasks must use the same code

PARALLELISM

« Parallelize the parallelization process

The “master” thread could allocate all of the other threads
on its own and at once

« This takes time and isn’t very parallel!
* In Java, these parallel tasks must use the same code
- |If athread is created,

PARALLELISM

« Parallelize the parallelization process

The “master” thread could allocate all of the other threads
on its own and at once

« This takes time and isn’t very parallel!
* In Java, these parallel tasks must use the same code
- |If athread is created,

» Check to see if my work is below the cutoff, if so,
perform the work

PARALLELISM

« Parallelize the parallelization process

The “master” thread could allocate all of the other threads
on its own and at once

« This takes time and isn’t very parallel!

* In Java, these parallel tasks must use the same code
- If athread is created,

Check to see if my work is below the cutoff, if so,
perform the work

If not, divide the work in half and issue a new thread
for each

PARALLELISM

« Parallelize the parallelization process

The “master” thread could allocate all of the other threads
on its own and at once

« This takes time and isn’t very parallel!
* In Java, these parallel tasks must use the same code
- |If athread is created,

» Check to see if my work is below the cutoff, if so,
perform the work

. lnot_divide t inhalf and. | I
foreach

* [Issue a new thread to do one half, and then do the
other half yourself

PARALLELISM

« Parallelize the parallelization process

* The “master” thread could allocate all of the other threads
on its own and at once
« This takes time and isn’t very parallel!
* In Java, these parallel tasks must use the same code
- |f athread is created,

» Check to see if my work is below the cutoff, if so,
perform the work

. M not _divide t in half andi | |
foreach
* Issue a new thread to do one half, and then do the
other half yourself
« This will parallelize the thread creation process and limit
the number of threads that are waiting to be joined.

RECURSIVE TASKS

 Parallelism in Java works around
RecursiveTask objects

RECURSIVE TASKS

 Parallelism in Java works around
RecursiveTask objects
- They have a constructor, which passes in all of the

relevant information needed to perform the work

* Also, they have a function compute() which is where the
work is conducted

RECURSIVE TASKS

 Parallelism in Java works around
RecursiveTask objects

* They have a constructor, which passes in all of the
relevant information needed to perform the work

* Also, they have a function compute() which is where the
work is conducted

» Recursive Tasks have a generic type that is the type their
final compute should return

RECURSIVE TASKS

 Parallelism in Java works around
RecursiveTask objects

* They have a constructor, which passes in all of the
relevant information needed to perform the work

* Also, they have a function compute() which is where the
work is conducted

» Recursive Tasks have a generic type that is the type their
final compute should return

* In order to start a parallel procedure, we create a
RecursiveTask that we've defined and then give it to the
ForkJoinPool using invoke(RecursiveTask)

RECURSIVE TASKS

public static final ForkJoinPool POOL = new ForkJoinPool();
static class SumTask extends RecursiveTask<Long>{
long[] arr; int lo; int hi;
public SumTask(long [] arr, int lo, int hi){
this. arr = arr; this.lo = lo; this.hi = hi;
}
protected long compute() {
long result = 0;
for(int i = lo; i<hi; i++){
result += arr[i];

}

return result;
}
public static long sum(long[] arr){

SumTask task = new SumTask(arr,0,arr.length;

POOL. invoke(task);

RECURSIVE TASKS

* This implementation isn’t in parallel
- We've created the pool and the task, but we're only calling
it once, there aren’t any other threads being made.

* We need to utilize fork() and join() to create parallel
threads.

RECURSIVE TASKS

* This implementation isn’t in parallel

- We've created the pool and the task, but we're only calling
it once, there aren’t any other threads being made.

* We need to utilize fork() and join() to create parallel
threads.

« While we call POOL.invoke() to start the process, we use
task.fork() to recursively start a new thread which runs
compute() for a task.

* When we call task.join(), we wait for that parallel process
to finish with its own work

RECURSIVE TASKS

* This implementation isn’t in parallel

- We've created the pool and the task, but we're only calling
it once, there aren’t any other threads being made.

* We need to utilize fork() and join() to create parallel
threads.

« While we call POOL.invoke() to start the process, we use
task.fork() to recursively start a new thread which runs
compute() for a task.

* When we call task.join(), we wait for that parallel process
to finish with its own work

RECURSIVE TASKS

« Basic ideas for good parallel compute
functions

RECURSIVE TASKS

« Basic ideas for good parallel compute
functions

* When given a job, a RecursiveTask is also required to start
other recursive tasks.

RECURSIVE TASKS

« Basic ideas for good parallel compute
functions
* When given a job, a RecursiveTask is also required to start
other recursive tasks.

« So, the compute function needs to divide the work and
create new RecursiveTask objects to do smaller portions of
the work.

RECURSIVE TASKS

« Basic ideas for good parallel compute
functions

* When given a job, a RecursiveTask is also required to start
other recursive tasks.

« So, the compute function needs to divide the work and
create new RecursiveTask objects to do smaller portions of
the work.

- Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

RECURSIVE TASKS

« Basic ideas for good parallel compute
functions

* When given a job, a RecursiveTask is also required to start
other recursive tasks.

« So, the compute function needs to divide the work and
create new RecursiveTask objects to do smaller portions of
the work.

- Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

« Creating a new thread takes time!

RECURSIVE TASKS

« Basic ideas for good parallel compute
functions

When given a job, a RecursiveTask is also required to start
other recursive tasks.

So, the compute function needs to divide the work and
create new RecursiveTask objects to do smaller portions of
the work.

Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

Creating a new thread takes time!
Then, we just need to join together all of their tasks

RECURSIVE TASKS

« Basic ideas for good parallel compute
functions

When given a job, a RecursiveTask is also required to start
other recursive tasks.

So, the compute function needs to divide the work and
create new RecursiveTask objects to do smaller portions of
the work.

Eventually, once we reach a cutoff point, we want to do the
work sequentially (not in parallel)

Creating a new thread takes time!
Then, we just need to join together all of their tasks
The master thread should also do some work

NEXT CLASS

 How do we implement this concept explicitly
in Java?

NEXT CLASS

 How do we implement this concept explicitly
in Java?

 What types of problems can be parallelized
easily?

NEXT CLASS

 How do we implement this concept explicitly
in Java?

 What types of problems can be parallelized
easily?

* Are there common “parallel operations” that
can make solving this problem easier?

NEXT CLASS

 How do we implement this concept explicitly
in Java?

 What types of problems can be parallelized
easily?

* Are there common “parallel operations” that
can make solving this problem easier?

« How much faster can we actually get with
parallelism?

