
CSE 332
AUGUST 14TH – EFFICIENT
REDUCTIONS

ADMINISTRIVIA
•  P2 should be back and graded

ADMINISTRIVIA
•  P2 should be back and graded
•  P1 ClassNotFound fixed tonight

ADMINISTRIVIA
•  P2 should be back and graded
•  P1 ClassNotFound fixed tonight
•  EX11 graded and back tonight

ADMINISTRIVIA
•  P2 should be back and graded
•  P1 ClassNotFound fixed tonight
•  EX11 graded and back tonight
•  Parallelism exercises

•  If you passed the tests on your home
computer, you will get full marks (provided
you actually used parallelism)

ADMINISTRIVIA
•  P2 should be back and graded
•  P1 ClassNotFound fixed tonight
•  EX11 graded and back tonight
•  Parallelism exercises

•  If you passed the tests on your home
computer, you will get full marks (provided
you actually used parallelism)

•  P3 due tonight at midnight

EXERCISE TOKENS
•  Redoing exercises with tokens

EXERCISE TOKENS
•  Redoing exercises with tokens

•  Fill out token form

EXERCISE TOKENS
•  Redoing exercises with tokens

•  Fill out token form
•  This should unlock the assignment so that

you can resubmit

EXERCISE TOKENS
•  Redoing exercises with tokens

•  Fill out token form
•  This should unlock the assignment so that

you can resubmit
•  Additionally, for a brief paragraph, explain

the mistakes that you made and how you
learned from them (even if you just didn’t
submit at all)

COURSE EVALUATIONS
•  Course evaluations are out, please take 5

or 10 minutes to fill out the evaluations
•  https://uw.iasystem.org/survey/179903

COURSE EVALUATIONS
•  Course evaluations are out, please take 5

or 10 minutes to fill out the evaluations
•  https://uw.iasystem.org/survey/179903

•  These are very important, not just for me
but for the department

COURSE EVALUATIONS
•  Course evaluations are out, please take 5

or 10 minutes to fill out the evaluations
•  https://uw.iasystem.org/survey/179903

•  These are very important, not just for me
but for the department

•  Summer quarter: what went well and what
was difficult

COURSE EVALUATIONS
•  Course evaluations are out, please take 5

or 10 minutes to fill out the evaluations
•  https://uw.iasystem.org/survey/179903

•  These are very important, not just for me
but for the department

•  Summer quarter: what went well and what
was difficult
•  Prereq course, want to balance preparing

you and not overworking you

EXAM REVIEW
•  Tuesday 1:30 PM 045

EXAM REVIEW
•  Tuesday 1:30 PM 045

•  Topics list will go out soon

EXAM REVIEW
•  Tuesday 1:30 PM 045

•  Topics list will go out soon
•  Exam will be a two-period exam

EXAM REVIEW
•  Tuesday 1:30 PM 045

•  Topics list will go out soon
•  Exam will be a two-period exam

•  Section: Sorting and Parallelism

EXAM REVIEW
•  Tuesday 1:30 PM 045

•  Topics list will go out soon
•  Exam will be a two-period exam

•  Section: Sorting and Parallelism
•  Friday: Graphs and Remaining

EXAM REVIEW
•  Tuesday 1:30 PM 045

•  Topics list will go out soon
•  Exam will be a two-period exam

•  Section: Sorting and Parallelism
•  Friday: Graphs and Remaining
•  Material from before the midterm is fair

game for both days

TODAY’S LECTURE
•  Graph algorithm review

TODAY’S LECTURE
•  Graph algorithm review
•  Efficient reductions

DIJKSTRAS ALGORITHM
1.  For each node v, set v.cost = ∞ and v.known = false
2.  Set source.cost = 0
3.  While there are unknown nodes in the graph

a)  Select the unknown node v with lowest cost
b)  Mark v as known
c)  For each edge (v,u) with weight w,

 c1 = v.cost + w // cost of best path through v to u
 c2 = u.cost // cost of best path to u previously known
 if(c1 < c2){ // if the path through v is better

 u.cost = c1
 u.path = v // for computing actual paths

 }

23

A B

D
C

F H

E

G

0

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A 0
B ??
C ??
D ??
E ??
F ??
G ??
H ??

5

Order Added to Known Set:

A B

D
C

F H

E

G

0 2

4

1

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E ??
F ??
G ??
H ??

5

Order Added to Known Set:

A

A B

D
C

F H

E

G

0 2

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ??
G ??
H ??

5

Order Added to Known Set:

A, C

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G ??
H ??

5

Order Added to Known Set:

A, C, B

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G ??
H ??

5

Order Added to Known Set:

A, C, B, D

A B

D
C

F H

E

G

0 2 4 7

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ??
H ≤ 7 F

5

Order Added to Known Set:

A, C, B, D, F

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

PRIM’S ALGORITHM
•  A traversal

PRIM’S ALGORITHM
•  A traversal

•  Pick a start node

PRIM’S ALGORITHM
•  A traversal

•  Pick a start node
•  Keep track of all of the vertices you can

reach

PRIM’S ALGORITHM
•  A traversal

•  Pick a start node
•  Keep track of all of the vertices you can

reach
•  Add the vertex that is closest (has the

edge with smallest weight) to the current
spanning tree.

PRIM’S ALGORITHM
•  A traversal

•  Pick a start node
•  Keep track of all of the vertices you can

reach
•  Add the vertex that is closest (has the

edge with smallest weight) to the current
spanning tree.

•  Is this similar to something we’ve seen
before?

PRIM’S ALGORITHM
•  Modify Dijkstra’s algorithm

PRIM’S ALGORITHM
•  Modify Dijkstra’s algorithm

•  Instead of measuring the total length from
start to the new vertex, now we only care
about the edge from our current spanning
tree to new nodes

THE ALGORITHM
1.  For each node v, set v.cost = ∞ and v.known = false
2.  Choose any node v

a)  Mark v as known
b)  For each edge (v,u) with weight w, set u.cost=w and u.prev=v

3.  While there are unknown nodes in the graph
a)  Select the unknown node v with lowest cost
b)  Mark v as known and add (v, v.prev) to output
c)  For each edge (v,u) with weight w,

 if(w < u.cost) {
 u.cost = w;
 u.prev = v;
 }

EXAMPLE

A B

C
D

F

E

G

∞

∞

∞

∞

∞

∞

2

1
2

vertex known? cost prev
A ∞
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

5

1
1

1

2 6
5 3

10

∞

42

A B

C
D

F

E

G

0 2

∞

2

1
∞

∞

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E ∞
F ∞
G ∞

5

1
1

1

2 6
5 3

10

43

A B

C
D

F

E

G

0 2

6

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D

5

1
1

1

2 6
5 3

10

A B

C
D

F

E

G

0 2

2

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

5

1
1

1

2 6
5 3

10

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

47

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

5

1
1

1

2 6
5 3

10

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

5

1
1

1

2 6
5 3

10

KRUSKAL’S ALGORITHM
•  Pseudocode:

KRUSKAL’S ALGORITHM
•  Pseudocode:

•  Sort the edges (or place them into a heap)
•  Create a union-find data structure with all

separate vertices

KRUSKAL’S ALGORITHM
•  Pseudocode:

•  Sort the edges (or place them into a heap)
•  Create a union-find data structure with all

separate vertices
•  For each edge, add it to the minimum

spanning tree if it does not form a cycle

KRUSKAL’S ALGORITHM
•  Pseudocode:

•  Sort the edges (or place them into a heap)
•  Create a union-find data structure with all

separate vertices
•  For each edge, add it to the minimum

spanning tree if the two vertices don’t have
the same representative in the union find

KRUSKAL’S ALGORITHM
•  Pseudocode:

•  Sort the edges (or place them into a heap)
•  Create a union-find data structure with all

separate vertices
•  For each edge, add it to the minimum

spanning tree if the two vertices don’t have
the same representative in the union find

•  Union the two vertices in the union find

KRUSKAL’S ALGORITHM
•  Pseudocode:

•  Sort the edges (or place them into a heap)
•  Create a union-find data structure with all

separate vertices
•  For each edge, add it to the minimum

spanning tree if the two vertices don’t have
the same representative in the union find

•  Union the two vertices in the union find
•  Stop after you’ve added |V|-1 edges

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

EFFICIENT REDUCTIONS
•  https://courses.cs.washington.edu/

courses/cse332/17wi/lectures/p-np-1/
efficient-reductions.pdf

•  https://courses.cs.washington.edu/
courses/cse332/17wi/lectures/p-np-2/p-
np.pdf

NEXT CLASS
•  Randomization and Approximation

NEXT CLASS
•  Randomization and Approximation
•  Exam review

