CSE 332

AUGUST 147H - EFFICIENT
REDUCTIONS

ADMINISTRIVIA

P2 should be back and graded

ADMINISTRIVIA

P2 should be back and graded
* P1 ClassNotFound fixed tonight

ADMINISTRIVIA

P2 should be back and graded
* P1 ClassNotFound fixed tonight
 EX11 graded and back tonight

ADMINISTRIVIA

P2 should be back and graded
* P1 ClassNotFound fixed tonight
EX11 graded and back tonight

Parallelism exercises

* If you passed the tests on your home
computer, you will get full marks (provided
you actually used parallelism)

ADMINISTRIVIA

P2 should be back and graded
* P1 ClassNotFound fixed tonight
EX11 graded and back tonight

Parallelism exercises

* If you passed the tests on your home
computer, you will get full marks (provided
you actually used parallelism)

P3 due tonight at midnight

EXERCISE TOKENS

 Redoing exercises with tokens

EXERCISE TOKENS

 Redoing exercises with tokens
* Fill out token form

EXERCISE TOKENS

 Redoing exercises with tokens

* Fill out token form

* This should unlock the assignment so that
you can resubmit

EXERCISE TOKENS

 Redoing exercises with tokens

* Fill out token form

* This should unlock the assignment so that
you can resubmit

« Additionally, for a brief paragraph, explain
the mistakes that you made and how you
learned from them (even if you just didn’t

submit at all)

COURSE EVALUATIONS

 Course evaluations are out, please take 5
or 10 minutes to fill out the evaluations

COURSE EVALUATIONS

 Course evaluations are out, please take 5
or 10 minutes to fill out the evaluations

 These are very important, not just for me
but for the department

COURSE EVALUATIONS

 Course evaluations are out, please take 5
or 10 minutes to fill out the evaluations

 These are very important, not just for me
but for the department

 Summer quarter: what went well and what
was difficult

COURSE EVALUATIONS

 Course evaluations are out, please take 5
or 10 minutes to fill out the evaluations

 These are very important, not just for me
but for the department

 Summer quarter: what went well and what
was difficult

* Prereq course, want to balance preparing
you and not overworking you

EXAM REVIEW
 Tuesday 1:30 PM 045

EXAM REVIEW

 Tuesday 1:30 PM 045
» Topics list will go out soon

EXAM REVIEW

 Tuesday 1:30 PM 045

» Topics list will go out soon
 Exam will be a two-period exam

EXAM REVIEW

 Tuesday 1:30 PM 045

» Topics list will go out soon
 Exam will be a two-period exam

« Section: Sorting and Parallelism

EXAM REVIEW

 Tuesday 1:30 PM 045

» Topics list will go out soon
 Exam will be a two-period exam

« Section: Sorting and Parallelism
 Friday: Graphs and Remaining

EXAM REVIEW

 Tuesday 1:30 PM 045

» Topics list will go out soon
 Exam will be a two-period exam

« Section: Sorting and Parallelism
 Friday: Graphs and Remaining

« Material from before the midterm is fair
game for both days

TODAY’S LECTURE

* Graph algorithm review

TODAY’S LECTURE

* Graph algorithm review
 Efficient reductions

DIJKSTRAS ALGORITHM

1. For each node v, set v.cost = ®© and v.known = false

2. Set source.cost = 0
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known

c) Foreach edge (v,u) with weight w,
cl = v.cost + w//costof best path through v to u

c2 = u.cost //costof best path to u previously known
if (cl < c2) { /ifthe path through v is better

u.cost = cl
u.path = v //for computing actual paths

}

23

0 W
A B
1
4 9 5 10 3
E) 2 C W1
7 = ¥

Order Added to Known Set:

4
H
1
4
vertex | known? cost path
A 0
B ?7?
C ?7?
D ?7?
E ?7?
F ?7?
G ?7?
H ?7?

0 2
A B
1
4 9 51 10
v 2 C
4D IE
7 W

Order Added to Known Set:

A

4
H
1
4
vertex | known? cost path
A Y 0
B <2 A
C <1 A
D <4 A
E ?7?
F ?7?
G ?7?
H ?7?

0 2
A B
1
4 9 51 10
) 4
HO == Z-u
7 12

Order Added to Known Set:

A C

4
H
1
4
vertex | known? cost path
A Y 0
B <2 A
C Y 1 A
D <4 A
E <12 C
F ?7?
G ?7?
H ?7?

0 2
A B
1
4 9 51 10
v
HO == Z-u
7 12

Order Added to Known Set:

A C B

4
H
1
4
vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D <4 A
E <12 C
F <4 B
G ?7?
H ?7?

0 2
A B
1
4 9 51 10 3
\ 4 C
2 |
4 D

7 12

Order Added to Known Set:

A CB,D

4
H
1
4
vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F <4 B
G ?7?
H ?7?

Order Added to Known Set:

A CB,D,F

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G ?7?

H <7 F

Order Added to Known Set:

A CBDFH

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G <8 H
H Y 7 F

Order Added to Known Set:

A CBD,FHG

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

known?

path

A C B D,FH G, E

<|=<|<|=<|=<|<]|x<

M| IT[(@|OI>|>>

PRIM’S ALGORITHM

A traversal

PRIM’S ALGORITHM

A traversal
* Pick a start node

PRIM’S ALGORITHM

A traversal

* Pick a start node

- Keep track of all of the vertices you can
reach

PRIM’S ALGORITHM

A traversal

* Pick a start node

- Keep track of all of the vertices you can
reach
* Add the vertex that is closest (has the

edge with smallest weight) to the current
spanning tree.

PRIM’S ALGORITHM

A traversal

* Pick a start node

- Keep track of all of the vertices you can
reach

* Add the vertex that is closest (has the

edge with smallest weight) to the current
spanning tree.

* Is this similar to something we’ve seen
before?

PRIM’S ALGORITHM

« Modify Dijkstra’s algorithm

PRIM’S ALGORITHM

« Modify Dijkstra’s algorithm

* Instead of measuring the total length from
start to the new vertex, now we only care
about the edge from our current spanning
tree to new nodes

THE ALGORITHM

1. For each node v, set v.cost = ®© and v.known = false

2. Choose any node v

a) Mark v as known
b) For each edge (v,u) with weight w, set u.cost=w and u.prev=v
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (v,u) with weight w,
if(w < u.cost) {
u.cost = w;
u.prev = v;

}

EXAMPLE

vertex | known? cost prev
A o0
B o0
C o0
D o0
E o0
F 00
G o0

prev

cost

known?

vertex

42

prev

cost

known?

vertex

43

prev

cost

known?

vertex

vertex | known? cost prev

A Y 0

B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

prev

cost

known?

vertex

prev

cost

known?

vertex

47

prev
E
D
A
D
C
E

cost
0
1
1
1
1
2
3

known?
Y
Y
Y
Y
Y
Y
Y

vertex
A
B
C
D
E
F
G

KRUSKAL’S ALGORITHM

 Pseudocode:

KRUSKAL’S ALGORITHM

 Pseudocode:

« Sort the edges (or place them into a heap)

* Create a union-find data structure with all
separate vertices

KRUSKAL’S ALGORITHM

 Pseudocode:

Sort the edges (or place them into a heap)

Create a union-find data structure with all
separate vertices

For each edge, add it to the minimum
spanning tree if it does not form a cycle

KRUSKAL’S ALGORITHM

 Pseudocode:

« Sort the edges (or place them into a heap)

* Create a union-find data structure with all
separate vertices

* For each edge, add it to the minimum
spanning tree if the two vertices don’t have
the same representative in the union find

KRUSKAL’S ALGORITHM

 Pseudocode:

Sort the edges (or place them into a heap)

Create a union-find data structure with all
separate vertices

For each edge, add it to the minimum
spanning tree if the two vertices don’t have
the same representative in the union find

Union the two vertices in the union find

KRUSKAL’S ALGORITHM

 Pseudocode:

Sort the edges (or place them into a heap)

Create a union-find data structure with all
separate vertices

For each edge, add it to the minimum
spanning tree if the two vertices don’t have
the same representative in the union find

Union the two vertices in the union find
Stop after you've added |V|-1 edges

EXAMPLE
2

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
2

Edges in sorted order:

1: , (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: : , (B,E), (D,E)
2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: : : , (D,E)
2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
2

Edges in sorted order:
1: , , ,
2: (A,B), (C,F), (A,C)
3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
2

Edges in sorted order:
1: , , ,
2: , (C,F), (A,C)
3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
2

Edges in sorted order:
1: , , ,
2: , , (A,C)
3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
2

Edges in sorted order:
1: , , ,
2: , ,

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
2

Edges in sorted order:

5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

EFFICIENT REDUCTIONS

* https://courses.cs.washington.edu/
courses/cse332/17willectures/p-np-1/
efficient-reductions.pdf

* https://courses.cs.washington.edu/
courses/cse332/17willectures/p-np-2/p-
np.pdf

NEXT CLASS

« Randomization and Approximation

NEXT CLASS

« Randomization and Approximation

 Exam review

