
CSE 332 
JUNE 19– COURSE INTRODUCTIONS; 

ADTS; STACKS AND QUEUES 



WELCOME! 
•  Administrative Minutiae 
•  Course Objectives 
•  Review of Stacks and Queues 
•  Abstract Data Types (ADT) 



COURSE INFO 
•  Evan McCarty (ejmcc@uw.edu) 
•  Office hours  (CSE 214) 

•  Mondays: 11:00 – 12:00 
•  Wednesdays: 11:00 – 12:00 
•  By appointment or over email 



COURSE STAFF 
•  TAs 

•  Jefferson – Section Thur 9:40-10:40 
•  Alon – Grading and Office hours 



HOMEWORK 
•  Homework will be assigned throughout 

the quarter.  



HOMEWORK 
•  Homework will be assigned throughout 

the quarter.  
•  There will be lots of assignments, all 

with different due dates, but they should 
all be fairly simple. 



HOMEWORK 
•  Homework will be assigned throughout 

the quarter.  
•  There will be lots of assignments, all 

with different due dates, but they should 
all be fairly simple. 

•  Some are more difficult than others, 
however, so it’s good to look at them in 
advance 



HOMEWORK 
•  This course focuses not only on 

programming and implementation, but 
also on theory and understanding 



HOMEWORK 
•  This course focuses not only on 

programming and implementation, but 
also on theory and understanding 

•  Homework and Projects are likely to 
reflect this 



HOMEWORK 
•  Academic honesty 

•  High level discussion 
•  Fully understand submission 
 

•   Reasonable effort and office hours 



PROJECTS 
•  In addition to exercises which will go out 

throughout the quarter, there will also be 
three projects, which you will complete 
in teams of two (or three if the class has 
an odd size) 



PROJECTS 
•  In addition to exercises which will go out 

throughout the quarter, there will also be 
three projects, which you will complete 
in teams of two (or three if the class has 
an odd size) 

•  First project will be out before class on 
Wednesday, so start thinking about 
teams and work schedules now. 



LECTURES 
•  Lecture slides will be posted online after 

class 



LECTURES 
•  Lecture slides will be posted online after 

class 
•  Questions are strongly encouraged 



LECTURES 
•  Lecture slides will be posted online after 

class 
•  Questions are strongly encouraged 
•  All material fair game for exams 



LECTURES 
•  Lecture slides will be posted online after 

class 
•  Questions are strongly encouraged 
•  All material fair game for exams 
•  Weiss textbook 



LECTURES 
•  Lecture slides will be posted online after 

class 
•  Questions are strongly encouraged 
•  All material fair game for exams 
•  Weiss textbook 

•  Mostly a reference, but it’s good for when 
an explanation isn’t good enough from 
me or the TAs 



LECTURES 
•  Because summer quarter has lectures 

that are 10 minutes longer, we will often 
use those 10 minute periods for practice 
problems and project check-ins 



LECTURES 
•  Because summer quarter has lectures 

that are 10 minutes longer, we will often 
use those 10 minute periods for practice 
problems and project check-ins 

•  Attendance is mandatory on days where 
a project check-in is scheduled 



SECTION 
•  Conducted by Jefferson 



SECTION 
•  Conducted by Jefferson 
•  QuickCheck 



SECTION 
•  Conducted by Jefferson 
•  QuickCheck 

•  Start section with a 5-10 minute problem 
for you to work on alone 



SECTION 
•  Conducted by Jefferson 
•  QuickCheck 

•  Start section with a 5-10 minute problem 
for you to work on alone 

•  Good indication of the type of problem 
we expect you to have learned from that 
week and the speed we expect you to be 
able to solve it 



SECTION 
•  Conducted by Jefferson 
•  QuickCheck 

•  Start section with a 5-10 minute problem 
for you to work on alone 

•  Good indication of the type of problem 
we expect you to have learned from that 
week and the speed we expect you to be 
able to solve it 

•  Ungraded 



EXAMS (TENTATIVE) 
•  Midterm exam 

•  9:40– 10:40; Friday, July 21 
•  Final Exam 

•  9:40 – 10:40; Friday, Aug 18 



EXAMS (TENTATIVE) 
•  Midterm exam 

•  9:40– 10:40; Friday, July 21 
•  Final Exam 

•  9:40 – 10:40; Friday, Aug 18 
•  Both conducted in lecture session. 



BEFORE HW COMES OUT 
•  Make sure you’ve properly set up the 

JDK 



BEFORE HW COMES OUT 
•  Make sure you’ve properly set up the 

JDK 
•  Also, get and install the latest version of 

eclipse, it is pivotal for the version 
control you will use on your projects 



DATA STRUCTURES  
AND PARALLELISM 
•  Understand and recognize behavior of 

key data structures 



DATA STRUCTURES  
AND PARALLELISM 
•  Understand and recognize behavior of 

key data structures 
•  Understand and solve common data 

structure problems 



DATA STRUCTURES  
AND PARALLELISM 
•  Understand and recognize behavior of 

key data structures 
•  Understand and solve common data 

structure problems 
•  Analyze operations and algorithms 



DATA STRUCTURES  
AND PARALLELISM 
•  Understand and recognize behavior of 

key data structures 
•  Understand and solve common data 

structure problems 
•  Analyze operations and algorithms 
•  Implement data structures and 

understand design trade-offs 



DATA STRUCTURES  
AND PARALLELISM 
•  Understand and recognize behavior of 

key data structures 
•  Understand and solve common data 

structure problems 
•  Analyze operations and algorithms 
•  Implement data structures and 

understand design trade-offs 
•  Understand concurrency and parallelism 

and how those impact outcomes and 
decisions 



CSE 143 
•  Object-oriented Programming 

•  Classes and Inheritance 
•  Methods, variables and conditions 
•  Loops and recursion 
•  Linked lists and simple trees 
•  Basic Sorting and Searching 
•  Concepts of Analysis O(n) v O(n2) 
•  Client v. Implementer 



CSE 332 
•  Design decisions 
•  Critical thinking 
•  Implementations 
•  Debugging and Testing 
•  Abstract Data Types 



ABSTRACTION 
•  Software engineering    

 v. Computer Science 
•  Applicable across languages and 

implementations 
•  Behavior focus 

•  How can you recognize an ADT? 



STACK? 
•  What is a stack? 



STACK? 
•  What is a stack? 

•  Outside of CS? 



STACK? 
•  What is a stack? 

•  Outside of CS? 
•  From 143? 



DEFINITIONS 
•  Abstract Data Type (ADT) 

•  Operations and expected behavior 
•  Data Structure 

•  Specific organization of data 
•  Can be analyzed 

•  Implementation 
•  Language specific application 



DESIGN DECISIONS 
•  Between an ADT and its implementation, 

there are design decisions 
•  Constraints of the problem 

•  Memory v. Speed 
•  One function v. another 
•  Generality v. Specificity 



DESIGN DECISIONS 
•  Linked List v Array 



DESIGN DECISIONS 
•  Linked List v Array 

•  Overhead 
•  Memory use 
•  Adding to middle 
•  Traversal 
•  Insertion 



DESIGN DECISIONS 
•  Shopping list? 



DESIGN DECISIONS 
•  Shopping list? 

•  What sorts of behavior do shoppers 
exhibit? 

•  What constraints are there on a shopper? 
•  What improvements would make a better 

shopping list? 



DESIGN DECISIONS 
•  Shopping list? 
•  Stack? 



DESIGN DECISIONS 
•  Shopping list? 
•  Stack? 

•  What sorts of behavior does the ‘stack’ support? 
•  What constraints are there on a stack user? 

(Is there a change in certainty?) 
•  What improvements would make a better stack? 

(What problems might arise in a stack?) 
 



STACK ADT 
•  Important to know exactly what we expect 

from a stack. 
 



STACK ADT 
•  Important to know exactly what we expect 

from a stack. 
•  Push(Object a) returns null; (other options?) 
•  Pop() returns Object a: where a is the element on ‘top’ of 

the stack; also removes a from the stack 
•  Top() returns Object a: where a is the element on ‘top’ of 

the stack without removing that element from the stack 



STACK ADT 
•  Important to know exactly what we expect 

from a stack. 
•  Push(Object a) returns null; (other options?) 
•  Pop() returns Object a: where a is the element on ‘top’ of 

the stack; also removes a from the stack 
•  Top() returns Object a: where a is the element on ‘top’ of 

the stack without removing that element from the stack 
•  How long will these operations take? 

 



STACK ADT 
•  Important to know exactly what we expect 

from a stack. 
•  Push(Object a) returns null; (other options?) 
•  Pop() returns Object a: where a is the element on ‘top’ of 

the stack; also removes a from the stack 
•  Top() returns Object a: where a is the element on ‘top’ of 

the stack without removing that element from the stack 
•  How long will these operations take? 
 
That depends on the Data Structure and Implementation 

 



STACK ADT 
•  Array implementation 
•  Unique problems? 

 



STACK ADT 
•  Array implementation 
•  Unique problems? 

 What if the array is full? 

 



STACK ADT 
•  Array implementation 
•  Unique problems? 

 What if the array is full? 
 What if we alternate push() and pop()? 

 



STACK ADT 
•  Array implementation 
•  Unique problems? 

•  End of Array 
•  Unique solutions? 

 



STACK ADT 
•  Array implementation 
•  Unique problems? 

•  End of Array 
•  Unique solutions? 

•  Resizing (costly!) 
•  Circular Array (?) 

 



CIRCULAR QUEUES 



CIRCULAR QUEUES 

Front Back 



CIRCULAR QUEUES 

Front Back 



CIRCULAR QUEUES 

Front Back 

Why this way? 
What function to front and back serve? 



CIRCULAR QUEUES 

Front Back 

enqueue(4) 



CIRCULAR QUEUES 

4 

Front Back 

Which operations will move what pointers? 



CIRCULAR QUEUES 

4 

Front Back 

Let’s do several enqueues 



CIRCULAR QUEUES 

4 5 9 2 3 1 6 

Front Back 

What happens now, on enqueue(7)? 



CIRCULAR QUEUES 

4 5 9 2 3 1 6 7 

Front Back 

Problems here? 
How to implement? 



CIRCULAR QUEUES 

4 5 9 2 3 1 6 7 

Front Back 

The queue is full, but it is the same 
situation (front == back) as when the queue 
is empty. This is a boundary condition. 



CIRCULAR QUEUES 

4 5 9 2 3 1 6 7 

Front Back 

We have to resize the list (or deny the add) 
if we get another enqueue. 



CIRCULAR QUEUES 

4 5 9 2 3 1 6 7 

Front Back 

What if we dequeue some items? 



CIRCULAR QUEUES 

5 9 2 3 1 6 7 

Front Back 

Dequeue() outputs 4 



CIRCULAR QUEUES 

5 9 2 3 1 6 7 

Front Back 

Dequeue() outputs 4 
Is the 4 really “deleted”? 



CIRCULAR QUEUES 

9 2 3 1 6 7 

Front Back 

Output 5 



CIRCULAR QUEUES 

9 2 3 1 6 7 

Front Back 

Now we’ve freed up some space and can 
enqueue more 



CIRCULAR QUEUES 
•  By moving the front and back pointers, 

we can utilize all of the space in the array 
•  Advantages over a linked list? 



CIRCULAR QUEUES 
•  By moving the front and back pointers, 

we can utilize all of the space in the array 
•  Advantages over a linked list? 

•  Fixed number of items 
•  Small data (Memory efficiency) 

•  BONUS: What is the memory overhead of 
the linked list? 


