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EXAM FRIDAY

* Practice exam after class today
* Topics:
« Stacks and Queues
BigO Notation and runtime Analysis
Heaps
Trees (BST and AVL)
Design Tradeoffs
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* Format

* No note sheet

One section of short answer

4-5 Technical Questions

1 Design Decision Question

Less than 10 minutes per problem
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« No Java material on the exam
* Looking for theoretical understanding

« Explanations are important (where
indicated)

 If you get stuck on a problem, move on

 Any questions?
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 Hashing
« Basic Concept
« Hash functions

* Collision Resolution
* Runtimes
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HASHING

* Introduction

» Suppose there is a set of data M

* Any data we might want to store is a
member of this set. For example, M might
be the set of all strings

* There is a set of data that we actually
care about storing D, where D << M

* For an English Dictionary, D might be the
set of English words
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HASHING

 What is our ideal data structure?
» The data structure should use O(D)
memory
* No extra memory is allocated
* The operation should run in O(1) time
* Accesses should be as fast as possible
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HASHING

« What are some difficulties with this?

* Need to know the size of D in advance or
lose memory to pointer overhead

- Hard to go from M -> D in O(1) time
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HASHING
« Memory: The Hash Table

« Consider an array of size ¢ * D

« Each index in the array corresponds to some
element in M that we want to store.

* The data in D does not need any particular
ordering.
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 What is the problem here?

« Takes O(D) time to find the word in the list
« Same problem with sorted arrays!

Apple
Pear
Orange
Durian | D
Kumquat
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 What’s the problem here?

Can'’t retrieve the random variable, O(D) search!

Kumquat
Pear

M Durian

Apple

Orange




THE HASH TABLE

 What about a pseudo-random mapping?

—>| Kumquat
> Pear

M > h(x) —>| _Durian

—>  Apple

—>| QOrange




THE HASH TABLE

 What about a pseudo-random mapping?

 This is “the hash function”

—>| Kumquat
> Pear

M > h(x) —>| _Durian

—>  Apple

—>| QOrange
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HASH FUNCTIONS

 The Hash Function maps the large space
M to our target space D.

 We want our hash function to do the
following:
- Be repeatable: H(x) = H(x) every run
* Be equally distributed: For all y,z in D,
P(H(y)) = P(H(z))
* Runin constanttime: H(x) = 0O(1)
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* Let’s consider an example. We want to
save 10 numbers from all possible Java
ints

* What is a simple hash function?

h(x) =
key%10

ints

QO[NNI [WIN[(—=]O
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* Let’s insert(519) table

* Where does it go?
* 519%10 =

h(x) =
key%10
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* Let’s insert(519) table

* Where does it go?
* 5319%10=9

519 ] h(x) =
key%10

Olo(Nlo|u|d|lwNd(=]o
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* Insert(214)

214
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* Insert(214)

214

519 h(x) =
key%10 >

: 214

Olo(Nlo|u|d|lwNd(=]o
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* insert(1001)
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* insert(1001)

0
214 —> 1: 1001
2
519 h(x) = 3
| key%10 (4. 214
1001 S
6
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8
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* |s there a problem here?
* Insert(3744)

0
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* |s there a problem here?
* Insert(3744)

0
214 —>11: 1001

2

519 h(x) = 3
key%10 —>1 4: 214

1001 5

6

7

3744 3
—>| 9: 519




HASH EXAMPLE

* |s there a problem here?

* Insert(3744)
 This is called a collision!

0
214 —> 1: 1001

2

519 h(x) = 3
key%10 —>1 4. 214

1001 5

6

7

3744 3
—>1 9: 519
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HASH FUNCTION

* In reality, good hash functions are
difficult to produce

 We want a hash that distributes our data
evenly throughout the space

 Usually, our hash function returns some

integer, which must then be modded to our
table size

* Needs to incorporate all the data in the keys
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HASH FUNCTION

* You will not have to produce hash
functions, but you should recognize good
ones

* They run in constant time
» They evenly distribute the data

* They return an integer

 These hash functions are chosen in
advance, you should not pick a hash
function relative to your data
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 How to rectify collisions?

« Think of a strategy for a few minutes
 Possible solutions:

« Store in the next available space
« Store both in the same space

* Try a different hash

* Resize the array




HASH EXAMPLE

« Consider the simplest solution




HASH EXAMPLE

« Consider the simplest solution
* Find the next available spot in the array
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« Consider the simplest solution

* Find the next available spot in the array
* This solution is called linear probing

0
214 —>11: 1001

2

519 h(x) = 3
key%10 —>1 4: 214

1001 5

6

7

3744 3
—>| 9: 519
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 What are the problems with this?

« How do we search for 37447

* Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

« What if we need to add something that
ends in 57

* |t also ends up in this problem area
* This is called clustering
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CLUSTERING

 What are the negative effects of
clustering?

* If the cluster becomes too large, two things
happen:

» The chances of colliding with the cluster
Increase

* The time it takes to find something in the
cluster increases. This isn’t O(1) time!
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CLUSTERING

« How can we solve this problem?

* Resize the array

* Give the elements more space to avoid
clusters. How long does this take? O(n)! all of

the elements need to be rehashed.
« Store multiple items in one location

« This is called chaining
- We'll discuss it later
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 Hash table methods are defined by how
they handle collisions

 Two main approaches

* Probing
 Chaining
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COLLISIONS
* Probing

 Linear probing
* Try the appropriate hash table row first

* Increase the index by one until a spot is
found

« Guaranteed to find a spot if it is available

* If the array is too full, its operations reach
O(n) time
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COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

« k+1, k+4, k+9, k+16, k+25

» Certain tables can cause secondary
clustering

« Can fail to insert if the table is over half full
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COLLISIONS

* Probing
* Secondary Hashing

 If two keys collide in the hash table, then a
secondary hash indicates the probing size

* Need to be careful, possible for infinite loops with a
very empty array
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COLLISIONS
« Chaining

Rather than probing for an open position, we
could just save multiple objects in the same
position

Some data structure is necessary here

Commonly a linked list, AVL tree or secondary
hash table.

Resizing isn’t necessary, but if you don’t, you
will get O(n) runtime.
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PRIMALITY

* Array sizes

We normally choose our hash tables to have prime size

This is because for any number we pick, so long as it is not
a multiple of our table size, they must be coprime

Two numbers x and y are coprime if they do not share any
common factors.

If the hash table size and the secondary hash value are
coprime, then the search will succeed if there is space
available

However, many primes cause secondary clustering when
used with quadratic probing




LOAD FACTOR

 When discussing hash table efficiency,
we call the proportion of stored data to
table size the load factor. It is represented
by the Greek character lambda (A).




LOAD FACTOR

 When discussing hash table efficiency,
we call the proportion of stored data to
table size the load factor. It is represented
by the Greek character lambda (A).

« We've discussed this a bit implicitly before




LOAD FACTOR

 When discussing hash table efficiency,
we call the proportion of stored data to
table size the load factor. It is represented
by the Greek character lambda (A).

« We've discussed this a bit implicitly before

- What are good load-factor (A) values for each of
our collision techniques?
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* Linear Probing?

* Quadratic Probing?

« Secondary Hashing?
« Chaining?

What are the tradeoffs?

* Memory efficiency
* Failure rate
 Access times?
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LOAD FACTOR

* Linear Probing? 0.25<A<0.5
Quadratic Probing? 0.10 <A <0.30
Secondary Hashing? 0.25 <A <0.5

* But we've eliminated primary clustering
Chaining?
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LOAD FACTOR

* Linear Probing? 0.25<A<0.5

« Quadratic Probing? 0.10 <A <0.30
« Secondary Hashing? 0.25<A<0.5
 Chaining? 3.0<A<10

- Because we allow multiple items in each
space, we can increase memory
efficiency by taking advantage

* As long as there are a constant number in
each space, we get O(1) runtimes.
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* As with most array data structures, you
will need to resize when they get too full

 Here, these resizes are often for
nerformance, rather than failure.
- Hash table maintenance is important

» Resizing is costly (but still O(n)) because
you have to resize the array and rehash

every element into the new table.
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 Hash tables are a good overall data
structure

Can provide O(1) access times
Can be memory inefficient

Probing can fail, and delete with probing
mechanisms is difficult

Chaining can be a good balance, but
there is a lot of overhead maintaining all
those data structures
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HASH TABLES

 Understand these tradeoffs and how
these implementations work

« Section tomorrow will provide practice
problems for each of these hash table
methods
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« Take-aways for the midterm

Hashtables should provide O(1) dictionary operations
Collisions make this problem difficult to achieve
Hashtables rely on a array and a hash function

The array should be relative to the size of the data
you want to keep

The hash function should run in constant time and
should distribute among the indices in the target
array

Linear probing is a solution for collisions, but only
works when there is lots of free space

Resizing is very costly




NEXT CLASS

e Hash Tables

 Examples, examples, examples
* Finish discussion
 Exam review




