
CSE 332
JULY 10TH – HASHING

EXAM FRIDAY
•  Practice exam after class today
•  Topics:

•  Stacks and Queues
•  BigO Notation and runtime Analysis
•  Heaps
•  Trees (BST and AVL)
•  Design Tradeoffs

EXAM FRIDAY
•  Format

EXAM FRIDAY
•  Format

•  No note sheet

EXAM FRIDAY
•  Format

•  No note sheet
•  One section of short answer

EXAM FRIDAY
•  Format

•  No note sheet
•  One section of short answer
•  4-5 Technical Questions

EXAM FRIDAY
•  Format

•  No note sheet
•  One section of short answer
•  4-5 Technical Questions
•  1 Design Decision Question

EXAM FRIDAY
•  Format

•  No note sheet
•  One section of short answer
•  4-5 Technical Questions
•  1 Design Decision Question
•  Less than 10 minutes per problem

EXAM FRIDAY
•  No Java material on the exam

EXAM FRIDAY
•  No Java material on the exam
•  Looking for theoretical understanding

EXAM FRIDAY
•  No Java material on the exam
•  Looking for theoretical understanding

•  Explanations are important (where
indicated)

EXAM FRIDAY
•  No Java material on the exam
•  Looking for theoretical understanding

•  Explanations are important (where
indicated)

•  If you get stuck on a problem, move on

EXAM FRIDAY
•  No Java material on the exam
•  Looking for theoretical understanding

•  Explanations are important (where
indicated)

•  If you get stuck on a problem, move on
•  Any questions?

TODAY’S LECTURE
•  Hashing

TODAY’S LECTURE
•  Hashing

•  Basic Concept

TODAY’S LECTURE
•  Hashing

•  Basic Concept
•  Hash functions

TODAY’S LECTURE
•  Hashing

•  Basic Concept
•  Hash functions
•  Collision Resolution

TODAY’S LECTURE
•  Hashing

•  Basic Concept
•  Hash functions
•  Collision Resolution
•  Runtimes

HASHING
•  Introduction

HASHING
•  Introduction

•  Suppose there is a set of data M

HASHING
•  Introduction

•  Suppose there is a set of data M
•  Any data we might want to store is a

member of this set. For example, M might
be the set of all strings

HASHING
•  Introduction

•  Suppose there is a set of data M
•  Any data we might want to store is a

member of this set. For example, M might
be the set of all strings

•  There is a set of data that we actually
care about storing D, where D << M

HASHING
•  Introduction

•  Suppose there is a set of data M
•  Any data we might want to store is a

member of this set. For example, M might
be the set of all strings

•  There is a set of data that we actually
care about storing D, where D << M

•  For an English Dictionary, D might be the
set of English words

HASHING
•  What is our ideal data structure?

HASHING
•  What is our ideal data structure?

•  The data structure should use O(D)
memory

HASHING
•  What is our ideal data structure?

•  The data structure should use O(D)
memory

•  No extra memory is allocated

HASHING
•  What is our ideal data structure?

•  The data structure should use O(D)
memory

•  No extra memory is allocated
•  The operation should run in O(1) time

HASHING
•  What is our ideal data structure?

•  The data structure should use O(D)
memory

•  No extra memory is allocated
•  The operation should run in O(1) time

•  Accesses should be as fast as possible

HASHING
•  What are some difficulties with this?

HASHING
•  What are some difficulties with this?

•  Need to know the size of D in advance or
lose memory to pointer overhead

HASHING
•  What are some difficulties with this?

•  Need to know the size of D in advance or
lose memory to pointer overhead

•  Hard to go from M -> D in O(1) time

HASHING
•  Memory: The Hash Table

HASHING
•  Memory: The Hash Table

•  Consider an array of size c * D

HASHING
•  Memory: The Hash Table

•  Consider an array of size c * D
•  Each index in the array corresponds to some

element in M that we want to store.

HASHING
•  Memory: The Hash Table

•  Consider an array of size c * D
•  Each index in the array corresponds to some

element in M that we want to store.
•  The data in D does not need any particular

ordering.

THE HASH TABLE
•  How can we do this?

M

D

•  How can we do this?
•  Unsorted Array

THE HASH TABLE

M

Apple

D

•  How can we do this?
•  Unsorted Array

Pear

THE HASH TABLE

M

Apple

D

•  How can we do this?
•  Unsorted Array

Pear

THE HASH TABLE

M

Apple

Orange
D

•  How can we do this?
•  Unsorted Array

Pear

THE HASH TABLE

M

Apple

Orange
Durian D

•  How can we do this?
•  Unsorted Array

Pear

THE HASH TABLE

M

Apple

Orange
Durian

Kumquat
D

•  What is the problem here?

Pear

THE HASH TABLE

M

Apple

Orange
Durian

Kumquat
D

•  What is the problem here?
•  Takes O(D) time to find the word in the list!

Pear

THE HASH TABLE

M

Apple

Orange
Durian

Kumquat
D

•  What is the problem here?
•  Takes O(D) time to find the word in the list
•  Same problem with sorted arrays!

Pear

THE HASH TABLE

M

Apple

Orange
Durian

Kumquat
D

•  What is another solution?

Pear

THE HASH TABLE

M

Apple

Orange
Durian

Kumquat
D

•  What is another solution?
•  Random mapping

Pear

THE HASH TABLE

M

Kumquat

Durian

Apple

Orange

D

•  What’s the problem here?

Pear

THE HASH TABLE

M

Kumquat

Durian

Apple

Orange

D

•  What’s the problem here?
•  Can’t retrieve the random variable, O(D) search!

Pear

THE HASH TABLE

M

Kumquat

Durian

Apple

Orange

D

•  What about a pseudo-random mapping?

Pear

THE HASH TABLE

M

Kumquat

Durian

Apple

Orange

D

h(x)

•  What about a pseudo-random mapping?
•  This is “the hash function”

Pear

THE HASH TABLE

M

Kumquat

Durian

Apple

Orange

D

h(x)

•  The Hash Function maps the large space
M to our target space D.

HASH FUNCTIONS

•  The Hash Function maps the large space
M to our target space D.

•  We want our hash function to do the
following:

HASH FUNCTIONS

•  The Hash Function maps the large space
M to our target space D.

•  We want our hash function to do the
following:
•  Be repeatable: H(x) = H(x) every run

HASH FUNCTIONS

•  The Hash Function maps the large space
M to our target space D.

•  We want our hash function to do the
following:
•  Be repeatable: H(x) = H(x) every run
•  Be equally distributed: For all y,z in D,
P(H(y)) = P(H(z))!

•  Run in constant time: H(x) = O(1)!

HASH FUNCTIONS

•  Let’s consider an example. We want to
save 10 numbers from all possible Java
ints!

HASH EXAMPLE

•  Let’s consider an example. We want to
save 10 numbers from all possible Java
ints
•  What is a simple hash function?

HASH EXAMPLE

1

ints

0

2
3
4
5
6
7
8
9

h(x)

•  Let’s consider an example. We want to
save 10 numbers from all possible Java
ints
•  What is a simple hash function?

HASH EXAMPLE

1

ints

0

2
3
4
5
6
7
8
9

h(x) =
key%10

•  Let’s insert(519) table

HASH EXAMPLE

1

ints

0

2
3
4
5
6
7
8
9

h(x) =
key%10

•  Let’s insert(519) table
•  Where does it go?

HASH EXAMPLE

1

ints

0

2
3
4
5
6
7
8
9

h(x) =
key%10

•  Let’s insert(519) table
•  Where does it go?
•  519%10 =

HASH EXAMPLE

1

ints

0

2
3
4
5
6
7
8
9

h(x) =
key%10

•  Let’s insert(519) table
•  Where does it go?
•  519%10 = 9

HASH EXAMPLE

1
0

2
3
4
5
6
7
8
9: 519

h(x) =
key%10

519

•  Insert(214)

HASH EXAMPLE

1
0

2
3
4
5
6
7
8
9: 519

h(x) =
key%10

519

214

•  Insert(214)

HASH EXAMPLE

1
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

214

•  insert(1001)

HASH EXAMPLE

1
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

214

1001

•  insert(1001)

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

214

1001

•  Is there a problem here?

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

214

1001

•  Is there a problem here?
•  insert(3744)

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

214

1001

3744

•  Is there a problem here?
•  insert(3744)

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

214

1001

3744

•  Is there a problem here?
•  insert(3744)
•  This is called a collision!

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

214

1001

3744

HASH FUNCTION
•  In reality, good hash functions are

difficult to produce
•  We want a hash that distributes our data

evenly throughout the space

HASH FUNCTION
•  In reality, good hash functions are

difficult to produce
•  We want a hash that distributes our data

evenly throughout the space
•  Usually, our hash function returns some

integer, which must then be modded to our
table size

HASH FUNCTION
•  In reality, good hash functions are

difficult to produce
•  We want a hash that distributes our data

evenly throughout the space
•  Usually, our hash function returns some

integer, which must then be modded to our
table size

•  Needs to incorporate all the data in the keys

HASH FUNCTION
•  You will not have to produce hash

functions, but you should recognize good
ones

HASH FUNCTION
•  You will not have to produce hash

functions, but you should recognize good
ones
•  They run in constant time

HASH FUNCTION
•  You will not have to produce hash

functions, but you should recognize good
ones
•  They run in constant time
•  They evenly distribute the data

HASH FUNCTION
•  You will not have to produce hash

functions, but you should recognize good
ones
•  They run in constant time
•  They evenly distribute the data
•  They return an integer

HASH FUNCTION
•  You will not have to produce hash

functions, but you should recognize good
ones
•  They run in constant time
•  They evenly distribute the data
•  They return an integer

•  These hash functions are chosen in
advance, you should not pick a hash
function relative to your data

•  How to rectify collisions?

HASH EXAMPLE

•  How to rectify collisions?
•  Think of a strategy for a few minutes

HASH EXAMPLE

•  How to rectify collisions?
•  Think of a strategy for a few minutes

•  Possible solutions:
•  Store in the next available space

HASH EXAMPLE

•  How to rectify collisions?
•  Think of a strategy for a few minutes

•  Possible solutions:
•  Store in the next available space
•  Store both in the same space

HASH EXAMPLE

•  How to rectify collisions?
•  Think of a strategy for a few minutes

•  Possible solutions:
•  Store in the next available space
•  Store both in the same space
•  Try a different hash

HASH EXAMPLE

•  How to rectify collisions?
•  Think of a strategy for a few minutes

•  Possible solutions:
•  Store in the next available space
•  Store both in the same space
•  Try a different hash
•  Resize the array

HASH EXAMPLE

•  Consider the simplest solution

HASH EXAMPLE

•  Consider the simplest solution
•  Find the next available spot in the array

HASH EXAMPLE

•  Consider the simplest solution
•  Find the next available spot in the array
•  This solution is called linear probing

LINEAR PROBING

•  Consider the simplest solution
•  Find the next available spot in the array
•  This solution is called linear probing

LINEAR PROBING

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

214

1001

3744

•  What are the problems with this?

LINEAR PROBING

•  What are the problems with this?
•  How do we search for 3744?

LINEAR PROBING

•  What are the problems with this?
•  How do we search for 3744?

•  Need to go to 4, and then cycle through
all of the entries until--

LINEAR PROBING

•  What are the problems with this?
•  How do we search for 3744?

•  Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

LINEAR PROBING

•  What are the problems with this?
•  How do we search for 3744?

•  Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

•  What if we need to add something that
ends in 5?

LINEAR PROBING

•  What are the problems with this?
•  How do we search for 3744?

•  Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

•  What if we need to add something that
ends in 5?

•  It also ends up in this problem area

LINEAR PROBING

•  What are the problems with this?
•  How do we search for 3744?

•  Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

•  What if we need to add something that
ends in 5?

•  It also ends up in this problem area
•  This is called clustering

LINEAR PROBING

•  What are the negative effects of
clustering?

CLUSTERING

•  What are the negative effects of
clustering?
•  If the cluster becomes too large, two things

happen:

CLUSTERING

•  What are the negative effects of
clustering?
•  If the cluster becomes too large, two things

happen:
•  The chances of colliding with the cluster

increase

CLUSTERING

•  What are the negative effects of
clustering?
•  If the cluster becomes too large, two things

happen:
•  The chances of colliding with the cluster

increase
•  The time it takes to find something in the

cluster increases

CLUSTERING

•  What are the negative effects of
clustering?
•  If the cluster becomes too large, two things

happen:
•  The chances of colliding with the cluster

increase
•  The time it takes to find something in the

cluster increases. This isn’t O(1) time!

CLUSTERING

•  How can we solve this problem?

CLUSTERING

•  How can we solve this problem?
•  Resize the array

CLUSTERING

•  How can we solve this problem?
•  Resize the array

•  Give the elements more space to avoid clusters

CLUSTERING

•  How can we solve this problem?
•  Resize the array

•  Give the elements more space to avoid
clusters. How long does this take?

CLUSTERING

•  How can we solve this problem?
•  Resize the array

•  Give the elements more space to avoid
clusters. How long does this take? O(n)! all of
the elements need to be rehashed.

CLUSTERING

•  How can we solve this problem?
•  Resize the array

•  Give the elements more space to avoid
clusters. How long does this take? O(n)! all of
the elements need to be rehashed.

•  Store multiple items in one location

CLUSTERING

•  How can we solve this problem?
•  Resize the array

•  Give the elements more space to avoid
clusters. How long does this take? O(n)! all of
the elements need to be rehashed.

•  Store multiple items in one location
•  This is called chaining

CLUSTERING

•  How can we solve this problem?
•  Resize the array

•  Give the elements more space to avoid
clusters. How long does this take? O(n)! all of
the elements need to be rehashed.

•  Store multiple items in one location
•  This is called chaining
•  We’ll discuss it later

CLUSTERING

COLLISIONS
•  Hash table methods are defined by how

they handle collisions

COLLISIONS
•  Hash table methods are defined by how

they handle collisions
•  Two main approaches

COLLISIONS
•  Hash table methods are defined by how

they handle collisions
•  Two main approaches

•  Probing

COLLISIONS
•  Hash table methods are defined by how

they handle collisions
•  Two main approaches

•  Probing
•  Chaining

COLLISIONS
•  Probing

COLLISIONS
•  Probing

•  Linear probing

COLLISIONS
•  Probing

•  Linear probing
•  Try the appropriate hash table row first

COLLISIONS
•  Probing

•  Linear probing
•  Try the appropriate hash table row first
•  Increase the index by one until a spot is

found

COLLISIONS
•  Probing

•  Linear probing
•  Try the appropriate hash table row first
•  Increase the index by one until a spot is

found
•  Guaranteed to find a spot if it is available

COLLISIONS
•  Probing

•  Linear probing
•  Try the appropriate hash table row first
•  Increase the index by one until a spot is

found
•  Guaranteed to find a spot if it is available
•  If the array is too full, its operations reach

O(n) time

COLLISIONS
•  Probing

•  Quadratic Probing

COLLISIONS
•  Probing

•  Quadratic Probing
•  Rather than increasing by one each time, we

increase by the squares

COLLISIONS
•  Probing

•  Quadratic Probing
•  Rather than increasing by one each time, we

increase by the squares
•  k+1, k+4, k+9, k+16, k+25

COLLISIONS
•  Probing

•  Quadratic Probing
•  Rather than increasing by one each time, we

increase by the squares
•  k+1, k+4, k+9, k+16, k+25
•  Certain tables can cause secondary

clustering

COLLISIONS
•  Probing

•  Quadratic Probing
•  Rather than increasing by one each time, we

increase by the squares
•  k+1, k+4, k+9, k+16, k+25
•  Certain tables can cause secondary

clustering

COLLISIONS
•  Probing

•  Quadratic Probing
•  Rather than increasing by one each time, we

increase by the squares
•  k+1, k+4, k+9, k+16, k+25
•  Certain tables can cause secondary

clustering
•  Can fail to insert if the table is over half full

COLLISIONS
•  Probing

•  Secondary Hashing

COLLISIONS
•  Probing

•  Secondary Hashing
•  If two keys collide in the hash table, then a

secondary hash indicates the probing size

COLLISIONS
•  Probing

•  Secondary Hashing
•  If two keys collide in the hash table, then a

secondary hash indicates the probing size
•  Need to be careful, possible for infinite loops with a

very empty array

COLLISIONS
•  Chaining

COLLISIONS
•  Chaining

•  Rather than probing for an open position, we
could just save multiple objects in the same
position

COLLISIONS
•  Chaining

•  Rather than probing for an open position, we
could just save multiple objects in the same
position

•  Some data structure is necessary here

COLLISIONS
•  Chaining

•  Rather than probing for an open position, we
could just save multiple objects in the same
position

•  Some data structure is necessary here
•  Commonly a linked list, AVL tree or secondary

hash table.

COLLISIONS
•  Chaining

•  Rather than probing for an open position, we
could just save multiple objects in the same
position

•  Some data structure is necessary here
•  Commonly a linked list, AVL tree or secondary

hash table.
•  Resizing isn’t necessary, but if you don’t, you

will get O(n) runtime.

PRIMALITY
•  Array sizes

PRIMALITY
•  Array sizes

•  We normally choose our hash tables to have prime size

PRIMALITY
•  Array sizes

•  We normally choose our hash tables to have prime size
•  Why?

PRIMALITY
•  Array sizes

•  We normally choose our hash tables to have prime size
•  This is because for any number we pick, so long as it is not

a multiple of our table size, they must be coprime

PRIMALITY
•  Array sizes

•  We normally choose our hash tables to have prime size
•  This is because for any number we pick, so long as it is not

a multiple of our table size, they must be coprime
•  Two numbers x and y are coprime if they do not share any

common factors.

PRIMALITY
•  Array sizes

•  We normally choose our hash tables to have prime size
•  This is because for any number we pick, so long as it is not

a multiple of our table size, they must be coprime
•  Two numbers x and y are coprime if they do not share any

common factors.
•  If the hash table size and the secondary hash value are

coprime, then the search will succeed if there is space
available

PRIMALITY
•  Array sizes

•  We normally choose our hash tables to have prime size
•  This is because for any number we pick, so long as it is not

a multiple of our table size, they must be coprime
•  Two numbers x and y are coprime if they do not share any

common factors.
•  If the hash table size and the secondary hash value are

coprime, then the search will succeed if there is space
available

•  However, many primes cause secondary clustering when
used with quadratic probing

LOAD FACTOR
•  When discussing hash table efficiency,

we call the proportion of stored data to
table size the load factor. It is represented
by the Greek character lambda (λ).

LOAD FACTOR
•  When discussing hash table efficiency,

we call the proportion of stored data to
table size the load factor. It is represented
by the Greek character lambda (λ).
•  We’ve discussed this a bit implicitly before

LOAD FACTOR
•  When discussing hash table efficiency,

we call the proportion of stored data to
table size the load factor. It is represented
by the Greek character lambda (λ).
•  We’ve discussed this a bit implicitly before
•  What are good load-factor (λ) values for each of

our collision techniques?

LOAD FACTOR
•  Linear Probing?
•  Quadratic Probing?
•  Secondary Hashing?
•  Chaining?

LOAD FACTOR
•  Linear Probing?
•  Quadratic Probing?
•  Secondary Hashing?
•  Chaining?
•  What are the tradeoffs?

LOAD FACTOR
•  Linear Probing?
•  Quadratic Probing?
•  Secondary Hashing?
•  Chaining?
•  What are the tradeoffs?

•  Memory efficiency

LOAD FACTOR
•  Linear Probing?
•  Quadratic Probing?
•  Secondary Hashing?
•  Chaining?
•  What are the tradeoffs?

•  Memory efficiency
•  Failure rate

LOAD FACTOR
•  Linear Probing?
•  Quadratic Probing?
•  Secondary Hashing?
•  Chaining?
•  What are the tradeoffs?

•  Memory efficiency
•  Failure rate
•  Access times?

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing?
•  Secondary Hashing?
•  Chaining?

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30
•  Secondary Hashing?
•  Chaining?

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30

•  If it gets to 0.5, then there is a chance of
failure, and a high chance of O(n) runtime

•  Secondary Hashing?
•  Chaining?

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30
•  Secondary Hashing? 0.25 < λ < 0.5
•  Chaining?

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30
•  Secondary Hashing? 0.25 < λ < 0.5

•  But we’ve eliminated primary clustering
•  Chaining?

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30
•  Secondary Hashing? 0.25 < λ < 0.5
•  Chaining? 3.0 < λ < 10

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30
•  Secondary Hashing? 0.25 < λ < 0.5
•  Chaining? 3.0 < λ < 10

•  Because we allow multiple items in each
space, we can increase memory
efficiency by taking advantage

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30
•  Secondary Hashing? 0.25 < λ < 0.5
•  Chaining? 3.0 < λ < 10

•  Because we allow multiple items in each
space, we can increase memory
efficiency by taking advantage

•  As long as there are a constant number in
each space, we get O(1) runtimes.

LOAD FACTOR
•  As with most array data structures, you

will need to resize when they get too full

LOAD FACTOR
•  As with most array data structures, you

will need to resize when they get too full
•  Here, these resizes are often for

performance, rather than failure.

LOAD FACTOR
•  As with most array data structures, you

will need to resize when they get too full
•  Here, these resizes are often for

performance, rather than failure.
•  Hash table maintenance is important

LOAD FACTOR
•  As with most array data structures, you

will need to resize when they get too full
•  Here, these resizes are often for

performance, rather than failure.
•  Hash table maintenance is important
•  Resizing is costly (but still O(n)) because

you have to resize the array and rehash
every element into the new table.

HASH TABLES
•  Hash tables are a good overall data

structure

HASH TABLES
•  Hash tables are a good overall data

structure
•  Can provide O(1) access times

HASH TABLES
•  Hash tables are a good overall data

structure
•  Can provide O(1) access times
•  Can be memory inefficient

HASH TABLES
•  Hash tables are a good overall data

structure
•  Can provide O(1) access times
•  Can be memory inefficient
•  Probing can fail, and delete with probing

mechanisms is difficult

HASH TABLES
•  Hash tables are a good overall data

structure
•  Can provide O(1) access times
•  Can be memory inefficient
•  Probing can fail, and delete with probing

mechanisms is difficult
•  Chaining can be a good balance, but

there is a lot of overhead maintaining all
those data structures

HASH TABLES
•  Understand these tradeoffs and how

these implementations work

HASH TABLES
•  Understand these tradeoffs and how

these implementations work
•  Section tomorrow will provide practice

problems for each of these hash table
methods

•  Take-aways for the midterm

HASH TABLES

•  Take-aways for the midterm
•  Hashtables should provide O(1) dictionary operations

HASH TABLES

•  Take-aways for the midterm
•  Hashtables should provide O(1) dictionary operations
•  Collisions make this problem difficult to achieve

HASH TABLES

•  Take-aways for the midterm
•  Hashtables should provide O(1) dictionary operations
•  Collisions make this problem difficult to achieve
•  Hashtables rely on a array and a hash function

HASH TABLES

•  Take-aways for the midterm
•  Hashtables should provide O(1) dictionary operations
•  Collisions make this problem difficult to achieve
•  Hashtables rely on a array and a hash function
•  The array should be relative to the size of the data

you want to keep

HASH TABLES

•  Take-aways for the midterm
•  Hashtables should provide O(1) dictionary operations
•  Collisions make this problem difficult to achieve
•  Hashtables rely on a array and a hash function
•  The array should be relative to the size of the data

you want to keep
•  The hash function should run in constant time and

should distribute among the indices in the target
array

HASH TABLES

•  Take-aways for the midterm
•  Hashtables should provide O(1) dictionary operations
•  Collisions make this problem difficult to achieve
•  Hashtables rely on a array and a hash function
•  The array should be relative to the size of the data

you want to keep
•  The hash function should run in constant time and

should distribute among the indices in the target
array

•  Linear probing is a solution for collisions, but only
works when there is lots of free space

HASH TABLES

•  Take-aways for the midterm
•  Hashtables should provide O(1) dictionary operations
•  Collisions make this problem difficult to achieve
•  Hashtables rely on a array and a hash function
•  The array should be relative to the size of the data

you want to keep
•  The hash function should run in constant time and

should distribute among the indices in the target
array

•  Linear probing is a solution for collisions, but only
works when there is lots of free space

•  Resizing is very costly

HASH TABLES

NEXT CLASS
•  Hash Tables

•  Examples, examples, examples
•  Finish discussion

•  Exam review

