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 Exam review session

« CSE 403: Thursday 3:30 — 5:00
 P2is out

« Checkpoint next Wednesday
 Definitely have Ckpt1 passing
« Chpt2 is a reasonable goal
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TODAY’S LECTURE

 Hashing

* Double hashing
e Conclusion
« Exam Review

* List of topics and things to know




HASHING

* Introduction

» Suppose there is a set of data M

* Any data we might want to store is a
member of this set. For example, M might
be the set of all strings

* There is a set of data that we actually
care about storing D, where D << M

* For an English Dictionary, D might be the
set of English words




HASHING
« Memory: The Hash Table

« Consider an array of size ¢ * D

« Each index in the array corresponds to some
element in M that we want to store.

* The data in D does not need any particular
ordering.




HASH FUNCTIONS

 The Hash Function maps the large space
M to our target space D.

 We want our hash function to do the
following:
- Be repeatable: H(x) = H(x) every run
* Be equally distributed: For all y,z in D,
P(H(y)) = P(H(z))
* Runin constanttime: H(x) = 0O(1)




HASH FUNCTION

* You will not have to produce hash
functions, but you should recognize good
ones

* They run in constant time
» They evenly distribute the data

* They return an integer

 These hash functions are chosen in
advance, you should not pick a hash
function relative to your data
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 Hash table methods are defined by how
they handle collisions

 Two main approaches

* Probing
 Chaining
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* Probing

 Linear probing
* Try the appropriate hash table row first

* Increase the index by one until a spot is
found

« Guaranteed to find a spot if it is available

* If the array is too full, its operations reach
O(n) time
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* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

« k+1, k+4, k+9, k+16, k+25

» Certain tables can cause secondary
clustering

« Can fail to insert if the table is over half full
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 If two keys collide in the hash table, then a
secondary hash indicates the probing size

* Need to be careful, possible for infinite loops with a
very empty array




COLLISIONS
« Chaining




COLLISIONS
« Chaining

Rather than probing for an open position, we
could just save multiple objects in the same
position

Some data structure is necessary here

Commonly a linked list, AVL tree or secondary
hash table.

Resizing isn’t necessary, but if you don’t, you
will get O(n) runtime.




LOAD FACTOR

* Linear Probing? 0.25<A<0.5

« Quadratic Probing? 0.10 <A <0.30
« Secondary Hashing? 0.25<A<0.5
 Chaining? 3.0<A<10
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DELETION

 How to delete from a hash table?

« Chaining: just remove the object from the
underlying data structure

* Probing: Must be able to follow the path in order
to find elements that have been added later

 Need to mark as deleted, but not treat as
completely empty
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LAZY DELETION

« Common strategy in difficult-to-delete
data structures

- When you delete, mark the element as deleted,
but maintain the data structure as-is
 Works well for AVL as well

« Can insert values into place if reinserted, just
cannot return the associated value on a call to
find

* Necessary for Probing (aka Open Addressing)
collision methods
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CHAINING

 What about chaining? What is a good
data structure to use?

Many implement with a simple linked list

If the load factor is A, what is the expected
number of elements in a single bin? A

However, the expected maximum actually grows
(roughly) logarithmically with table length

The more elements we add, the higher chance
that there is one bad bin
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 Solutions

« Can perform resize when any bin reaches a
certain size

* Qverallocates memory, if unlucky
* Preserves O(1) guarantee, however
* Downsizing is also difficult to calculate
« Make the underlying data structure more efficient
* AVL is surprisingly common
» Hash table is also common
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CHAINING

« Hash of hashes

Suppose we want a collision with probability 1/N

How big would our table need to be for open
addressing? N2

What if we use a hashtable of hashtables

Let the first table size be N

Second tables are dynamically allocated (they
will grow if they’re a heavy-hitter)

If we still want 1/N collision probability, how
large is the table? N2 but N is almost always a
constant

Some constant number have log n memory, but
this is O(n) memory usage overall!
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HASHTABLE IMPLEMENTATION

 Hashtables implement dictionaries

<Key, Value> pairs
Don’t allow duplicate keys

Keys with the same “value” must have the same hash
code

For open addressing, stored either as an array of
<key,value> class objects, or as two parallel arrays,
one of keys and the other of values
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HASHTABLE IMPLEMENTATION

* Resizing

Only get O(1) operations if the table is well-
maintained

Easy to get good runtimes, if you don’t consider
memory

bigO analysis can apply to memory consumption in
the same way it applies to clock cycles

Resizing takes O(n) extra memory, because you
need to maintain the original hash table while you
build the second.
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HASHTABLE IMPLEMENTATION

* Resizing
« lterate through the table (these are not in any

meaningful order)

* Insert each of the <k,v> pairs into the new hashtable
(which may be larger or smaller)

* Move pointers to new hash table
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HASHTABLE IMPLEMENTATION

« Assorted things

 Prime table sizes

« Usually keep an array of all the primes that roughly double
in size precalculated

* Finding primes is actually very computationally difficult,
« If nis large enough, finding the new prime can be the most
consuming portion of the resize
 If a.equals(b) then a.hashcode() == b.hashcode()

- Hardware constraints, even if you have lots of memory,
over allocating fails to take advantage of spatial locality
and can be problematic
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HASHTABLE TAKEAWAYS

* Provide constant time find(k), insert(k,v) and delete(k)
provided the structure is well maintained

« Load factor is the primary determinant of runtime
« Two approaches, probing v. chaining

* Primary and Secondary clustering

« Which chaining data structure do you use?

« Easy interview question answer, just be ready to explain
how your data structure reacts to memory constraints




EXAM FRIDAY

 Topics
« Definitions * AVL Trees
 Stacks and Queues » Hash Tables
* Heaps * Tries

* Runtime Analysis
* Dictionaries

BSTs
B-Trees
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DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary
« Supports functions: insert, find, delete
« Has expected behavior

« Data Structure

* Language independent structure which
Implements an ADT

 Example: AVL tree
« Can be analyzed asymptotically
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DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions
« Language specific
 Example
* The Queue ADT supports enqueue, dequeue
and front.

* Arrays and Linked Lists are examples of the
data structures

« Implementation: front and back pointers
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STACKS AND QUEUES

 Our first two ADTs
« Stack:

» Supports: push(), pop(), top()
* LIFO order

 Queue:

» Supports: enqueue(), dequeue(), front()
* FIFO order
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STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists
» Considerations
* Memory usage
« Ease of implementation
* Resizing time
* Runtimes:
* O(1) for all functions
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HEAPS

* Priority Queue ADT

« Supports: insert(), findMin(), deleteMin(),
changePriority()
» Data is stored in priority, value pairs

* In this class, we use the min-heap, where a lower
value means it should dequeue first
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HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property
* Implementation
* Array
* Find parents/children arithmetically
* Runtimes
 Insert: O(log n), findMin: O(1), deleteMin O(log n)
« ChangePriority: O(log n)
* buildHeap, O(n)
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RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments
 For loops and while statements

« Count the number of times relevant code is executed
* Important summations

* Sum of all numbers from 1 to n
« Sum of the powers of two
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 Asymptotic Analysis
- Best-case, worst-case, average-case

« Usually we discuss worst-case complexity

* If we increase the input size, how does the
computation time change

« BigO notation

« Upper bound for a given function

« f(n) = O(g(n) if there exists a c and n, for which
f(n) < c*g(n) forall n >n,
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RUNTIME ANALYSIS

Recurrences

Way in which we approach recursive functions
Separate into recursive and non-recursive

Calculate the runtimes for non-recursive and base
cases

Produce the recurrence

Solve the recurrence by rolling out, using a graphical
tree or using the master theorem

Provide the bigO asymptotic bounds
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RUNTIME ANALYSIS

« Amortized analysis

When computations come at predictable times but are
very expensive

The amortized runtime is the time a method takes to
run n consecutive operations divided by n.

This is different than best-case/worst-case
Array resizing was the prominent example
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RUNTIME ANALYSIS

Basic ideas

O(1): Input size has no effect on runtime

O(log n): doubling the input increases the runtime by
some constant amount

O(n): linear time, each additional input increases
execution time by a constant amount

O(n?): doubling the input increases the runtime by a
factor of 4.

O(2"): exponential, increasing the input by one
doublies the runtime
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DICTIONARIES

« ADT

« Supports the following functions
Insert(key k, value v)
find(key k)
« delete(key k)
- Data is stored in key, value pairs
* In this course, duplicate keys are not allowed

« Most data structures can implement a dictionary
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* Binary trees
* Nodes with two children

 Maintains search property

* All values in the left subtree must be less than the parent

» All values in the right subtree must be greater than the
parent

« With each increase in height, the number of nodes in a tree
roughly doubles

« A completely full tree has 2"-1 nodes

 Roughly half of a binary search tree are nodes
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« Specific type of binary search tree
« Still must implement binary search

 Nodes in AVL trees have two extra fields, height and
balance

« Balance = | height(left) — height(right) |

« Balance for each node must be less than or equal to 1
« Trees with this condition still have O(log n) height
 No covering delete in this course

* Find: O(log n): Insert O(log n)
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AVL ROTATIONS

« AVL Rotations occur when an insertion makes a node
out of balance

« Relative to the node that is unbalanced, there are four
rotations depending on which grandchild received the new
node.

« Left-left and right right rotations involve the child of the
affected node being rotated up into position

« Left-right and right-left rotations involve the grandchild being
rotated up into position. The grandparent and parent
become the two children

* |tis important that these rotations preserve BST property
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 Memory is not the equal access object that traditional
theory discusses

«  Memory is broken up into pages

- Some pages are on disk, others are in cache

* Need a data structure to minimize disk accesses
« Data structure

« Two types of nodes, signposts and leaves

« Signposts have between M/2 and M children, where M
makes the signpost object as large as possible while still
fitting in one page

« Leaves have between L/2 and L pieces of sorted data and a
pointer to the next leaf

* Root is exempt from minimums




B-PLUS TREES

* Inserting




B-PLUS TREES

* Inserting
 Add in sorted order




B-PLUS TREES

* Inserting

* Add in sorted order
If you fail, break the leaf into two




B-PLUS TREES

* Inserting

* Add in sorted order
 If you fail, break the leaf into two

If the signpost cannot fit another node, recursively try to add
nodes back up to the root until a signpost has room




B-PLUS TREES

* Inserting

* Add in sorted order
 If you fail, break the leaf into two

 |f the signpost cannot fit another node, recursively try to add
nodes back up to the root until a signpost has room

 Find




B-PLUS TREES

* Inserting

* Add in sorted order
 If you fail, break the leaf into two

 |f the signpost cannot fit another node, recursively try to add
nodes back up to the root until a signpost has room

 Find

« Signposts indicate where key,value pairs are by markers in
their node, a child is between two values




B-PLUS TREES

* Inserting

* Add in sorted order
 If you fail, break the leaf into two

 |f the signpost cannot fit another node, recursively try to add
nodes back up to the root until a signpost has room

 Find
- Signposts indicate where key,value pairs are by markers in
their node, a child is between two values
 Traverse down the tree to the bottom
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e Delete

« |If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)

« |If not, merge leaves together

« Recursively merge signposts together as necessary in the
path back to the root

» Gives us the most use out of a single disk access

« Commonly used for databases because it allows good disk
storage and easy retrieval of keys in a range
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HASH TABLES

 Alarge data set M with a smaller set that should be
saved, D

* A hash function maps M onto D

* It should runin O(1) time
It should distribute into all of the available spots evenly
« Hashtables provide O(1) runtime IF

« Collisions are not a problem

* Decrease the chance of collisions by increasing the
amount of memory

Resizing is costly
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DESIGN DECISION PROBLEM

* Think about runtime
 Memory constraints
* Function prioritizing

 Experimental considerations




NEXT CLASS

« Exam!




