CSE 332

JULY 12TH - HASHING AND EXAM REVIEW

ADMINISTRIVIA

- Exam review session
- CSE 403: Thursday 3:30-5:00

ADMINISTRIVIA

- Exam review session
- CSE 403: Thursday 3:30-5:00
- $\mathbf{P} 2$ is out

ADMINISTRIVIA

- Exam review session
- CSE 403: Thursday 3:30-5:00
- $\mathbf{P} 2$ is out
- Checkpoint next Wednesday

ADMINISTRIVIA

- Exam review session
- CSE 403: Thursday 3:30-5:00
- P2 is out
- Checkpoint next Wednesday
- Definitely have Ckpt1 passing

ADMINISTRIVIA

- Exam review session
- CSE 403: Thursday 3:30-5:00
- P2 is out
- Checkpoint next Wednesday
- Definitely have Ckpt1 passing
- Chpt2 is a reasonable goal

TODAY'S LECTURE

- Hashing

TODAY'S LECTURE

- Hashing
- Double hashing

TODAY'S LECTURE

- Hashing
- Double hashing
- Conclusion

TODAY'S LECTURE

- Hashing
- Double hashing
- Conclusion
- Exam Review

TODAY'S LECTURE

- Hashing
- Double hashing
- Conclusion
- Exam Review
- List of topics and things to know

HASHING

- Introduction
- Suppose there is a set of data \mathbf{M}
- Any data we might want to store is a member of this set. For example, \mathbf{M} might be the set of all strings
- There is a set of data that we actually care about storing D, where $\mathbf{D} \ll \mathbf{M}$
- For an English Dictionary, D might be the set of English words

HASHING

- Memory: The Hash Table
- Consider an array of size c * D
- Each index in the array corresponds to some element in \mathbf{M} that we want to store.
- The data in D does not need any particular ordering.

HASH FUNCTIONS

- The Hash Function maps the large space M to our target space D.
- We want our hash function to do the following:
- Be repeatable: $\mathrm{H}(\mathrm{x})=\mathrm{H}(\mathrm{x})$ every run
- Be equally distributed: For all y, z in D, P(H(y)) = P(H(z))
- Run in constant time: $\mathrm{H}(\mathrm{x})=\mathrm{O}(1)$

HASH FUNCTION

- You will not have to produce hash functions, but you should recognize good ones
- They run in constant time
- They evenly distribute the data
- They return an integer
- These hash functions are chosen in advance, you should not pick a hash function relative to your data

COLLISIONS

- Hash table methods are defined by how they handle collisions

COLLISIONS

- Hash table methods are defined by how they handle collisions
- Two main approaches
- Probing
- Chaining

COLLISIONS

- Probing
- Linear probing

COLLISIONS

- Probing
- Linear probing
- Try the appropriate hash table row first
- Increase the index by one until a spot is found
- Guaranteed to find a spot if it is available
- If the array is too full, its operations reach O(n) time

COLLISIONS

- Probing
- Quadratic Probing

COLLISIONS

- Probing
- Quadratic Probing
- Rather than increasing by one each time, we increase by the squares
- k+1, k+4, k+9, k+16, k+25
- Certain tables can cause secondary clustering
- Can fail to insert if the table is over half full

COLLISIONS

- Probing
- Secondary Hashing

COLLISIONS

- Probing
- Secondary Hashing
- If two keys collide in the hash table, then a secondary hash indicates the probing size
- Need to be careful, possible for infinite loops with a very empty array

COLLISIONS

- Probing
- Secondary Hashing
- If two keys collide in the hash table, then a secondary hash indicates the probing size
- Need to be careful, possible for infinite loops with a very empty array

COLLISIONS

- Chaining

COLLISIONS

- Chaining
- Rather than probing for an open position, we could just save multiple objects in the same position
- Some data structure is necessary here
- Commonly a linked list, AVL tree or secondary hash table.
- Resizing isn't necessary, but if you don't, you will get $\mathrm{O}(\mathrm{n})$ runtime.

LOAD FACTOR

- Linear Probing? $0.25<\lambda<0.5$
- Quadratic Probing? $0.10<\lambda<0.30$
- Secondary Hashing? $0.25<\lambda<0.5$
- Chaining? $3.0<\lambda<10$

DELETION

- How to delete from a hash table?

DELETION

- How to delete from a hash table?
- Chaining: just remove the object from the underlying data structure

DELETION

- How to delete from a hash table?
- Chaining: just remove the object from the underlying data structure
- Probing:

DELETION

- How to delete from a hash table?
- Chaining: just remove the object from the underlying data structure
- Probing: Must be able to follow the path in order to find elements that have been added later

DELETION

- How to delete from a hash table?
- Chaining: just remove the object from the underlying data structure
- Probing: Must be able to follow the path in order to find elements that have been added later
- Need to mark as deleted, but not treat as completely empty

LAZY DELETION

- Common strategy in difficult-to-delete data structures

LAZY DELETION

- Common strategy in difficult-to-delete data structures
- When you delete, mark the element as deleted, but maintain the data structure as-is

LAZY DELETION

- Common strategy in difficult-to-delete data structures
- When you delete, mark the element as deleted, but maintain the data structure as-is
- Works well for AVL as well

LAZY DELETION

- Common strategy in difficult-to-delete data structures
- When you delete, mark the element as deleted, but maintain the data structure as-is
- Works well for AVL as well
- Can insert values into place if reinserted, just cannot return the associated value on a call to find

LAZY DELETION

- Common strategy in difficult-to-delete data structures
- When you delete, mark the element as deleted, but maintain the data structure as-is
- Works well for AVL as well
- Can insert values into place if reinserted, just cannot return the associated value on a call to find
- Necessary for Probing (aka Open Addressing) collision methods

CHAINING

- What about chaining? What is a good data structure to use?

CHAINING

- What about chaining? What is a good data structure to use?
- Many implement with a simple linked list

CHAINING

- What about chaining? What is a good data structure to use?
- Many implement with a simple linked list
- If the load factor is λ, what is the expected number of elements in a single bin?

CHAINING

- What about chaining? What is a good data structure to use?
- Many implement with a simple linked list
- If the load factor is λ, what is the expected number of elements in a single bin? $\boldsymbol{\lambda}$

CHAINING

- What about chaining? What is a good data structure to use?
- Many implement with a simple linked list
- If the load factor is λ, what is the expected number of elements in a single bin? $\boldsymbol{\lambda}$
- However, the expected maximum actually grows (roughly) logarithmically with table length

CHAINING

- What about chaining? What is a good data structure to use?
- Many implement with a simple linked list
- If the load factor is λ, what is the expected number of elements in a single bin? $\boldsymbol{\lambda}$
- However, the expected maximum actually grows (roughly) logarithmically with table length

CHAINING

- What about chaining? What is a good data structure to use?
- Many implement with a simple linked list
- If the load factor is λ, what is the expected number of elements in a single bin? $\boldsymbol{\lambda}$
- However, the expected maximum actually grows (roughly) logarithmically with table length
- The more elements we add, the higher chance that there is one bad bin

CHAINING

- Solutions
- Can perform resize when any bin reaches a certain size

CHAINING

- Solutions
- Can perform resize when any bin reaches a certain size
- Overallocates memory, if unlucky

CHAINING

- Solutions
- Can perform resize when any bin reaches a certain size
- Overallocates memory, if unlucky
- Preserves O(1) guarantee, however

CHAINING

- Solutions
- Can perform resize when any bin reaches a certain size
- Overallocates memory, if unlucky
- Preserves O(1) guarantee, however
- Downsizing is also difficult to calculate

CHAINING

- Solutions
- Can perform resize when any bin reaches a certain size
- Overallocates memory, if unlucky
- Preserves O(1) guarantee, however
- Downsizing is also difficult to calculate
- Make the underlying data structure more efficient

CHAINING

- Solutions
- Can perform resize when any bin reaches a certain size
- Overallocates memory, if unlucky
- Preserves O(1) guarantee, however
- Downsizing is also difficult to calculate
- Make the underlying data structure more efficient
- AVL is surprisingly common

CHAINING

- Solutions
- Can perform resize when any bin reaches a certain size
- Overallocates memory, if unlucky
- Preserves O(1) guarantee, however
- Downsizing is also difficult to calculate
- Make the underlying data structure more efficient
- AVL is surprisingly common
- Hash table is also common

CHAINING

- Hash of hashes

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$
- How big would our table need to be for open addressing?

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$
- How big would our table need to be for open addressing? \mathbf{N}^{2}

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$
- How big would our table need to be for open addressing? \mathbf{N}^{2}
- What if we use a hashtable of hashtables

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$
- How big would our table need to be for open addressing? \mathbf{N}^{2}
- What if we use a hashtable of hashtables
- Let the first table size be N

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$
- How big would our table need to be for open addressing? \mathbf{N}^{2}
- What if we use a hashtable of hashtables
- Let the first table size be N
- Second tables are dynamically allocated (they will grow if they're a heavy-hitter)

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$
- How big would our table need to be for open addressing? \mathbf{N}^{2}
- What if we use a hashtable of hashtables
- Let the first table size be N
- Second tables are dynamically allocated (they will grow if they're a heavy-hitter)
- If we still want $1 / \mathrm{N}$ collision probability, how large is the table?

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$
- How big would our table need to be for open addressing? \mathbf{N}^{2}
- What if we use a hashtable of hashtables
- Let the first table size be N
- Second tables are dynamically allocated (they will grow if they're a heavy-hitter)
- If we still want $1 / \mathrm{N}$ collision probability, how large is the table? \mathbf{N}^{2} but \mathbf{N} is almost always a constant

CHAINING

- Hash of hashes
- Suppose we want a collision with probability $1 / \mathrm{N}$
- How big would our table need to be for open addressing? \mathbf{N}^{2}
- What if we use a hashtable of hashtables
- Let the first table size be N
- Second tables are dynamically allocated (they will grow if they're a heavy-hitter)
- If we still want $1 / \mathrm{N}$ collision probability, how large is the table? \mathbf{N}^{2} but \mathbf{N} is almost always a constant
- Some constant number have log n memory, but this is $O(n)$ memory usage overall!

HASHTABLE IMPLEMENTATION

- Hashtables implement dictionaries

HASHTABLE IMPLEMENTATION

- Hashtables implement dictionaries
- <Key, Value> pairs

HASHTABLE IMPLEMENTATION

- Hashtables implement dictionaries
- <Key, Value> pairs
- Don't allow duplicate keys

HASHTABLE IMPLEMENTATION

- Hashtables implement dictionaries
- <Key, Value> pairs
- Don't allow duplicate keys
- Keys with the same "value" must have the same hash code

HASHTABLE IMPLEMENTATION

- Hashtables implement dictionaries
- <Key, Value> pairs
- Don't allow duplicate keys
- Keys with the same "value" must have the same hash code
- For open addressing, stored either as an array of <key,value> class objects, or as two parallel arrays, one of keys and the other of values

HASHTABLE IMPLEMENTATION

- Resizing

HASHTABLE IMPLEMENTATION

- Resizing
- Only get $\mathrm{O}(1)$ operations if the table is wellmaintained

HASHTABLE IMPLEMENTATION

- Resizing
- Only get $\mathrm{O}(1)$ operations if the table is wellmaintained
- Easy to get good runtimes, if you don't consider memory

HASHTABLE IMPLEMENTATION

- Resizing
- Only get $\mathrm{O}(1)$ operations if the table is wellmaintained
- Easy to get good runtimes, if you don't consider memory
- bigO analysis can apply to memory consumption in the same way it applies to clock cycles

HASHTABLE IMPLEMENTATION

- Resizing
- Only get $\mathrm{O}(1)$ operations if the table is wellmaintained
- Easy to get good runtimes, if you don't consider memory
- bigO analysis can apply to memory consumption in the same way it applies to clock cycles
- Resizing takes O(n) extra memory, because you need to maintain the original hash table while you build the second.

HASHTABLE IMPLEMENTATION

- Resizing
- Iterate through the table (these are not in any meaningful order)

HASHTABLE IMPLEMENTATION

- Resizing
- Iterate through the table (these are not in any meaningful order)
- Insert each of the <k,v> pairs into the new hashtable (which may be larger or smaller)
- Move pointers to new hash table

HASHTABLE IMPLEMENTATION

- Assorted things

HASHTABLE IMPLEMENTATION

- Assorted things
- Prime table sizes
- Usually keep an array of all the primes that roughly double in size precalculated

HASHTABLE IMPLEMENTATION

- Assorted things
- Prime table sizes
- Usually keep an array of all the primes that roughly double in size precalculated
- Finding primes is actually very computationally difficult,

HASHTABLE IMPLEMENTATION

- Assorted things
- Prime table sizes
- Usually keep an array of all the primes that roughly double in size precalculated
- Finding primes is actually very computationally difficult,
- If n is large enough, finding the new prime can be the most consuming portion of the resize

HASHTABLE IMPLEMENTATION

- Assorted things
- Prime table sizes
- Usually keep an array of all the primes that roughly double in size precalculated
- Finding primes is actually very computationally difficult,
- If n is large enough, finding the new prime can be the most consuming portion of the resize
- If a.equals(b) then a.hashcode() == b.hashcode()

HASHTABLE IMPLEMENTATION

- Assorted things
- Prime table sizes
- Usually keep an array of all the primes that roughly double in size precalculated
- Finding primes is actually very computationally difficult,
- If n is large enough, finding the new prime can be the most consuming portion of the resize
- If a.equals(b) then a.hashcode() == b.hashcode()
- Hardware constraints, even if you have lots of memory, over allocating fails to take advantage of spatial locality and can be problematic

HASHTABLE TAKEAWAYS

- Provide constant time find(k), insert(k, v) and delete(k) provided the structure is well maintained

HASHTABLE TAKEAWAYS

- Provide constant time find(k), insert(k, v) and delete(k) provided the structure is well maintained
- Load factor is the primary determinant of runtime

HASHTABLE TAKEAWAYS

- Provide constant time find(k), insert(k, v) and delete(k) provided the structure is well maintained
- Load factor is the primary determinant of runtime
- Two approaches, probing v. chaining

HASHTABLE TAKEAWAYS

- Provide constant time find(k), insert(k, v) and delete(k) provided the structure is well maintained
- Load factor is the primary determinant of runtime
- Two approaches, probing v. chaining
- Primary and Secondary clustering

HASHTABLE TAKEAWAYS

- Provide constant time find(k), insert(k,v) and delete(k) provided the structure is well maintained
- Load factor is the primary determinant of runtime
- Two approaches, probing v. chaining
- Primary and Secondary clustering
- Which chaining data structure do you use?

HASHTABLE TAKEAWAYS

- Provide constant time find(k), insert(k,v) and delete(k) provided the structure is well maintained
- Load factor is the primary determinant of runtime
- Two approaches, probing v. chaining
- Primary and Secondary clustering
- Which chaining data structure do you use?
- Easy interview question answer, just be ready to explain how your data structure reacts to memory constraints

EXAM FRIDAY

- Topics
- Definitions
- Stacks and Queues
- Heaps
- Runtime Analysis
- Dictionaries
- BSTs
- B-Trees
- AVL Trees
- Hash Tables
- Tries

DEFINITIONS

- Important terms

DEFINITIONS

- Important terms
- Abstract Data Type

DEFINITIONS

- Important terms
- Abstract Data Type
- Example: Dictionary

DEFINITIONS

- Important terms
- Abstract Data Type
- Example: Dictionary
- Supports functions: insert, find, delete
- Has expected behavior

DEFINITIONS

- Important terms
- Abstract Data Type
- Example: Dictionary
- Supports functions: insert, find, delete
- Has expected behavior
- Data Structure

DEFINITIONS

- Important terms
- Abstract Data Type
- Example: Dictionary
- Supports functions: insert, find, delete
- Has expected behavior
- Data Structure
- Language independent structure which implements an ADT

DEFINITIONS

- Important terms
- Abstract Data Type
- Example: Dictionary
- Supports functions: insert, find, delete
- Has expected behavior
- Data Structure
- Language independent structure which implements an ADT
- Example: AVL tree

DEFINITIONS

- Important terms
- Abstract Data Type
- Example: Dictionary
- Supports functions: insert, find, delete
- Has expected behavior
- Data Structure
- Language independent structure which implements an ADT
- Example: AVL tree
- Can be analyzed asymptotically

DEFINITIONS

- Important terms
- Implementation
- Low-level design decisions

DEFINITIONS

- Important terms
- Implementation
- Low-level design decisions
- Language specific

DEFINITIONS

- Important terms
- Implementation
- Low-level design decisions
- Language specific
- Example

DEFINITIONS

- Important terms
- Implementation
- Low-level design decisions
- Language specific
- Example
- The Queue ADT supports enqueue, dequeue and front.

DEFINITIONS

- Important terms
- Implementation
- Low-level design decisions
- Language specific
- Example
- The Queue ADT supports enqueue, dequeue and front.
- Arrays and Linked Lists are examples of the data structures

DEFINITIONS

- Important terms
- Implementation
- Low-level design decisions
- Language specific
- Example
- The Queue ADT supports enqueue, dequeue and front.
- Arrays and Linked Lists are examples of the data structures
- Implementation: front and back pointers

STACKS AND QUEUES

- Our first two ADTs

STACKS AND QUEUES

- Our first two ADTs
- Stack:

STACKS AND QUEUES

- Our first two ADTs
- Stack:
- Supports: push(), pop(), top()

STACKS AND QUEUES

- Our first two ADTs
- Stack:
- Supports: push(), pop(), top()
- LIFO order

STACKS AND QUEUES

- Our first two ADTs
- Stack:
- Supports: push(), pop(), top()
- LIFO order
- Queue:

STACKS AND QUEUES

- Our first two ADTs
- Stack:
- Supports: push(), pop(), top()
- LIFO order
- Queue:
- Supports: enqueue(), dequeue(), front()

STACKS AND QUEUES

- Our first two ADTs
- Stack:
- Supports: push(), pop(), top()
- LIFO order
- Queue:
- Supports: enqueue(), dequeue(), front()
- FIFO order

STACKS AND QUEUES

- Data structure choices

STACKS AND QUEUES

- Data structure choices
- Arrays and Linked Lists

STACKS AND QUEUES

- Data structure choices
- Arrays and Linked Lists
- Considerations

STACKS AND QUEUES

- Data structure choices
- Arrays and Linked Lists
- Considerations
- Memory usage

STACKS AND QUEUES

- Data structure choices
- Arrays and Linked Lists
- Considerations
- Memory usage
- Ease of implementation

STACKS AND QUEUES

- Data structure choices
- Arrays and Linked Lists
- Considerations
- Memory usage
- Ease of implementation
- Resizing time

STACKS AND QUEUES

- Data structure choices
- Arrays and Linked Lists
- Considerations
- Memory usage
- Ease of implementation
- Resizing time
- Runtimes:

STACKS AND QUEUES

- Data structure choices
- Arrays and Linked Lists
- Considerations
- Memory usage
- Ease of implementation
- Resizing time
- Runtimes:
- O(1) for all functions

HEAPS

- Priority Queue ADT

HEAPS

- Priority Queue ADT
- Supports: insert(), findMin(), deleteMin(), changePriority()

HEAPS

- Priority Queue ADT
- Supports: insert(), findMin(), deleteMin(), changePriority()
- Data is stored in priority, value pairs

HEAPS

- Priority Queue ADT
- Supports: insert(), findMin(), deleteMin(), changePriority()
- Data is stored in priority, value pairs
- In this class, we use the min-heap, where a lower value means it should dequeue first

HEAPS

- Data Structure
- Heap

HEAPS

- Data Structure
- Heap
- Complete binary tree

HEAPS

- Data Structure
- Heap
- Complete binary tree
- Heap property

HEAPS

- Data Structure
- Heap
- Complete binary tree
- Heap property
- Implementation

HEAPS

- Data Structure
- Heap
- Complete binary tree
- Heap property
- Implementation
- Array

HEAPS

- Data Structure
- Heap
- Complete binary tree
- Heap property
- Implementation
- Array
- Find parents/children arithmetically

HEAPS

- Data Structure
- Heap
- Complete binary tree
- Heap property
- Implementation
- Array
- Find parents/children arithmetically
- Runtimes

HEAPS

- Data Structure
- Heap
- Complete binary tree
- Heap property
- Implementation
- Array
- Find parents/children arithmetically
- Runtimes
- Insert: $\mathrm{O}(\log n)$, findMin: $\mathrm{O}(1)$, deleteMin $\mathrm{O}(\log n)$
- ChangePriority: $\mathrm{O}(\log n)$

HEAPS

- Data Structure
- Heap
- Complete binary tree
- Heap property
- Implementation
- Array
- Find parents/children arithmetically
- Runtimes
- Insert: $\mathrm{O}(\log n)$, findMin: $\mathrm{O}(1)$, deleteMin $\mathrm{O}(\log n)$
- ChangePriority: O(log n)
- buildHeap, O(n)

RUNTIME ANALYSIS

- Counting the number of operations

RUNTIME ANALYSIS

- Counting the number of operations
- Comparisons, mathematical operations, assignments

RUNTIME ANALYSIS

- Counting the number of operations
- Comparisons, mathematical operations, assignments
- For loops and while statements

RUNTIME ANALYSIS

- Counting the number of operations
- Comparisons, mathematical operations, assignments
- For loops and while statements
- Count the number of times relevant code is executed

RUNTIME ANALYSIS

- Counting the number of operations
- Comparisons, mathematical operations, assignments
- For loops and while statements
- Count the number of times relevant code is executed
- Important summations

RUNTIME ANALYSIS

- Counting the number of operations
- Comparisons, mathematical operations, assignments
- For loops and while statements
- Count the number of times relevant code is executed
- Important summations
- Sum of all numbers from 1 to n

RUNTIME ANALYSIS

- Counting the number of operations
- Comparisons, mathematical operations, assignments
- For loops and while statements
- Count the number of times relevant code is executed
- Important summations
- Sum of all numbers from 1 to n
- Sum of the powers of two

RUNTIME ANALYSIS

- Asymptotic Analysis

RUNTIME ANALYSIS

- Asymptotic Analysis
- Best-case, worst-case, average-case

RUNTIME ANALYSIS

- Asymptotic Analysis
- Best-case, worst-case, average-case
- Usually we discuss worst-case complexity

RUNTIME ANALYSIS

- Asymptotic Analysis
- Best-case, worst-case, average-case
- Usually we discuss worst-case complexity
- If we increase the input size, how does the computation time change

RUNTIME ANALYSIS

- Asymptotic Analysis
- Best-case, worst-case, average-case
- Usually we discuss worst-case complexity
- If we increase the input size, how does the computation time change
- BigO notation

RUNTIME ANALYSIS

- Asymptotic Analysis
- Best-case, worst-case, average-case
- Usually we discuss worst-case complexity
- If we increase the input size, how does the computation time change
- BigO notation
- Upper bound for a given function

RUNTIME ANALYSIS

- Asymptotic Analysis
- Best-case, worst-case, average-case
- Usually we discuss worst-case complexity
- If we increase the input size, how does the computation time change
- BigO notation
- Upper bound for a given function
- $f(n)=O\left(g(n)\right.$ if there exists a c and n_{0} for which $f(n) \leq C^{*} g(n)$ for all $n \geq n_{0}$

RUNTIME ANALYSIS

- Recurrences

RUNTIME ANALYSIS

- Recurrences
- Way in which we approach recursive functions

RUNTIME ANALYSIS

- Recurrences
- Way in which we approach recursive functions
- Separate into recursive and non-recursive

RUNTIME ANALYSIS

- Recurrences
- Way in which we approach recursive functions
- Separate into recursive and non-recursive
- Calculate the runtimes for non-recursive and base cases

RUNTIME ANALYSIS

- Recurrences
- Way in which we approach recursive functions
- Separate into recursive and non-recursive
- Calculate the runtimes for non-recursive and base cases
- Produce the recurrence

RUNTIME ANALYSIS

- Recurrences
- Way in which we approach recursive functions
- Separate into recursive and non-recursive
- Calculate the runtimes for non-recursive and base cases
- Produce the recurrence
- Solve the recurrence by rolling out, using a graphical tree or using the master theorem

RUNTIME ANALYSIS

- Recurrences
- Way in which we approach recursive functions
- Separate into recursive and non-recursive
- Calculate the runtimes for non-recursive and base cases
- Produce the recurrence
- Solve the recurrence by rolling out, using a graphical tree or using the master theorem
- Provide the bigO asymptotic bounds

RUNTIME ANALYSIS

- Amortized analysis

RUNTIME ANALYSIS

- Amortized analysis
- When computations come at predictable times but are very expensive

RUNTIME ANALYSIS

- Amortized analysis
- When computations come at predictable times but are very expensive
- The amortized runtime is the time a method takes to run n consecutive operations divided by n.

RUNTIME ANALYSIS

- Amortized analysis
- When computations come at predictable times but are very expensive
- The amortized runtime is the time a method takes to run n consecutive operations divided by n.
- This is different than best-case/worst-case

RUNTIME ANALYSIS

- Amortized analysis
- When computations come at predictable times but are very expensive
- The amortized runtime is the time a method takes to run n consecutive operations divided by n.
- This is different than best-case/worst-case
- Array resizing was the prominent example

RUNTIME ANALYSIS

- Basic ideas
- $O(1)$: Input size has no effect on runtime

RUNTIME ANALYSIS

- Basic ideas
- O(1): Input size has no effect on runtime
- $O(\log n)$: doubling the input increases the runtime by some constant amount

RUNTIME ANALYSIS

- Basic ideas
- $O(1)$: Input size has no effect on runtime
- $O(\log n)$: doubling the input increases the runtime by some constant amount
- $O(n)$: linear time, each additional input increases execution time by a constant amount

RUNTIME ANALYSIS

- Basic ideas
- $O(1)$: Input size has no effect on runtime
- $\mathrm{O}(\log \mathrm{n})$: doubling the input increases the runtime by some constant amount
- $O(n)$: linear time, each additional input increases execution time by a constant amount
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$: doubling the input increases the runtime by a factor of 4 .

RUNTIME ANALYSIS

- Basic ideas
- $O(1)$: Input size has no effect on runtime
- $\mathrm{O}(\log \mathrm{n})$: doubling the input increases the runtime by some constant amount
- $O(n)$: linear time, each additional input increases execution time by a constant amount
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$: doubling the input increases the runtime by a factor of 4.
- $O\left(2^{n}\right)$: exponential, increasing the input by one doublies the runtime

DICTIONARIES

- ADT

DICTIONARIES

- ADT
- Supports the following functions

DICTIONARIES

- ADT
- Supports the following functions
- Insert(key k, value v)

DICTIONARIES

- ADT
- Supports the following functions
- Insert(key k, value v)
- find(key k)
- delete(key k)

DICTIONARIES

- ADT
- Supports the following functions
- Insert(key k, value v)
- find(key k)
- delete(key k)
- Data is stored in key, value pairs

DICTIONARIES

- ADT
- Supports the following functions
- Insert(key k, value v)
- find(key k)
- delete(key k)
- Data is stored in key, value pairs
- In this course, duplicate keys are not allowed

DICTIONARIES

- ADT
- Supports the following functions
- Insert(key k, value v)
- find(key k)
- delete(key k)
- Data is stored in key, value pairs
- In this course, duplicate keys are not allowed
- Most data structures can implement a dictionary

BINARY SEARCH TREES

- Binary trees

BINARY SEARCH TREES

- Binary trees
- Nodes with two children

BINARY SEARCH TREES

- Binary trees
- Nodes with two children
- Maintains search property

BINARY SEARCH TREES

- Binary trees
- Nodes with two children
- Maintains search property
- All values in the left subtree must be less than the parent
- All values in the right subtree must be greater than the parent

BINARY SEARCH TREES

- Binary trees
- Nodes with two children
- Maintains search property
- All values in the left subtree must be less than the parent
- All values in the right subtree must be greater than the parent
- With each increase in height, the number of nodes in a tree roughly doubles

BINARY SEARCH TREES

- Binary trees
- Nodes with two children
- Maintains search property
- All values in the left subtree must be less than the parent
- All values in the right subtree must be greater than the parent
- With each increase in height, the number of nodes in a tree roughly doubles
- A completely full tree has $\mathbf{2}^{\mathbf{h}} \mathbf{- 1}$ nodes

BINARY SEARCH TREES

- Binary trees
- Nodes with two children
- Maintains search property
- All values in the left subtree must be less than the parent
- All values in the right subtree must be greater than the parent
- With each increase in height, the number of nodes in a tree roughly doubles
- A completely full tree has $\mathbf{2}^{\mathrm{h}} \mathbf{- 1}$ nodes
- Roughly half of a binary search tree are nodes

AVL TREES

- Specific type of binary search tree

AVL TREES

- Specific type of binary search tree
- Still must implement binary search

AVL TREES

- Specific type of binary search tree
- Still must implement binary search
- Nodes in AVL trees have two extra fields, height and balance

AVL TREES

- Specific type of binary search tree
- Still must implement binary search
- Nodes in AVL trees have two extra fields, height and balance
- Balance $=$ | height(left) - height(right) |

AVL TREES

- Specific type of binary search tree
- Still must implement binary search
- Nodes in AVL trees have two extra fields, height and balance
- Balance $=\mid$ height(left) - height(right) |
- Balance for each node must be less than or equal to 1

AVL TREES

- Specific type of binary search tree
- Still must implement binary search
- Nodes in AVL trees have two extra fields, height and balance
- Balance $=\mid$ height(left) - height(right) |
- Balance for each node must be less than or equal to 1
- Trees with this condition still have $\mathbf{O}(\log n)$ height

AVL TREES

- Specific type of binary search tree
- Still must implement binary search
- Nodes in AVL trees have two extra fields, height and balance
- Balance $=$ | height(left) - height(right) |
- Balance for each node must be less than or equal to 1
- Trees with this condition still have $\mathbf{O}(\log n)$ height
- No covering delete in this course

AVL TREES

- Specific type of binary search tree
- Still must implement binary search
- Nodes in AVL trees have two extra fields, height and balance
- Balance $=$ | height(left) - height(right) |
- Balance for each node must be less than or equal to 1
- Trees with this condition still have $\mathbf{O}(\log n)$ height
- No covering delete in this course
- Find: O(log $n):$ Insert $\mathbf{O}(\log n)$

AVL ROTATIONS

- AVL Rotations occur when an insertion makes a node out of balance

AVL ROTATIONS

- AVL Rotations occur when an insertion makes a node out of balance
- Relative to the node that is unbalanced, there are four rotations depending on which grandchild received the new node.

AVL ROTATIONS

- AVL Rotations occur when an insertion makes a node out of balance
- Relative to the node that is unbalanced, there are four rotations depending on which grandchild received the new node.
- Left-left and right right rotations involve the child of the affected node being rotated up into position

AVL ROTATIONS

- AVL Rotations occur when an insertion makes a node out of balance
- Relative to the node that is unbalanced, there are four rotations depending on which grandchild received the new node.
- Left-left and right right rotations involve the child of the affected node being rotated up into position
- Left-right and right-left rotations involve the grandchild being rotated up into position. The grandparent and parent become the two children

AVL ROTATIONS

- AVL Rotations occur when an insertion makes a node out of balance
- Relative to the node that is unbalanced, there are four rotations depending on which grandchild received the new node.
- Left-left and right right rotations involve the child of the affected node being rotated up into position
- Left-right and right-left rotations involve the grandchild being rotated up into position. The grandparent and parent become the two children
- It is important that these rotations preserve BST property

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses
- Memory is broken up into pages

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses
- Memory is broken up into pages
- Some pages are on disk, others are in cache

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses
- Memory is broken up into pages
- Some pages are on disk, others are in cache
- Need a data structure to minimize disk accesses

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses
- Memory is broken up into pages
- Some pages are on disk, others are in cache
- Need a data structure to minimize disk accesses
- Data structure

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses
- Memory is broken up into pages
- Some pages are on disk, others are in cache
- Need a data structure to minimize disk accesses
- Data structure
- Two types of nodes, signposts and leaves

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses
- Memory is broken up into pages
- Some pages are on disk, others are in cache
- Need a data structure to minimize disk accesses
- Data structure
- Two types of nodes, signposts and leaves
- Signposts have between $M / 2$ and M children, where M makes the signpost object as large as possible while still fitting in one page

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses
- Memory is broken up into pages
- Some pages are on disk, others are in cache
- Need a data structure to minimize disk accesses
- Data structure
- Two types of nodes, signposts and leaves
- Signposts have between M/2 and M children, where M makes the signpost object as large as possible while still fitting in one page
- Leaves have between L/2 and L pieces of sorted data and a pointer to the next leaf

B-PLUS TREES

- Memory is not the equal access object that traditional theory discusses
- Memory is broken up into pages
- Some pages are on disk, others are in cache
- Need a data structure to minimize disk accesses
- Data structure
- Two types of nodes, signposts and leaves
- Signposts have between M/2 and M children, where M makes the signpost object as large as possible while still fitting in one page
- Leaves have between L/2 and L pieces of sorted data and a pointer to the next leaf
- Root is exempt from minimums

B-PLUS TREES

- Inserting

B-PLUS TREES

- Inserting
- Add in sorted order

B-PLUS TREES

- Inserting
- Add in sorted order
- If you fail, break the leaf into two

B-PLUS TREES

- Inserting
- Add in sorted order
- If you fail, break the leaf into two
- If the signpost cannot fit another node, recursively try to add nodes back up to the root until a signpost has room

B-PLUS TREES

- Inserting
- Add in sorted order
- If you fail, break the leaf into two
- If the signpost cannot fit another node, recursively try to add nodes back up to the root until a signpost has room
- Find

B-PLUS TREES

- Inserting
- Add in sorted order
- If you fail, break the leaf into two
- If the signpost cannot fit another node, recursively try to add nodes back up to the root until a signpost has room
- Find
- Signposts indicate where key,value pairs are by markers in their node, a child is between two values

B-PLUS TREES

- Inserting
- Add in sorted order
- If you fail, break the leaf into two
- If the signpost cannot fit another node, recursively try to add nodes back up to the root until a signpost has room
- Find
- Signposts indicate where key,value pairs are by markers in their node, a child is between two values
- Traverse down the tree to the bottom

B-PLUS TREES

- Delete

B-PLUS TREES

- Delete
- If a deletion causes a leaf to go less than L/2 in size

B-PLUS TREES

- Delete
- If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)

B-PLUS TREES

- Delete
- If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)
- If not, merge leaves together

B-PLUS TREES

- Delete
- If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)
- If not, merge leaves together
- Recursively merge signposts together as necessary in the path back to the root

B-PLUS TREES

- Delete
- If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)
- If not, merge leaves together
- Recursively merge signposts together as necessary in the path back to the root
- Gives us the most use out of a single disk access

B-PLUS TREES

- Delete
- If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)
- If not, merge leaves together
- Recursively merge signposts together as necessary in the path back to the root
- Gives us the most use out of a single disk access
- Commonly used for databases because it allows good disk storage and easy retrieval of keys in a range

HASH TABLES

- A large data set M with a smaller set that should be saved, D

HASH TABLES

- A large data set M with a smaller set that should be saved, D
- A hash function maps M onto D

HASH TABLES

- A large data set M with a smaller set that should be saved, D
- A hash function maps M onto D
- It should run in $O(1)$ time

HASH TABLES

- A large data set M with a smaller set that should be saved, D
- A hash function maps M onto D
- It should run in $O(1)$ time
- It should distribute into all of the available spots evenly
- Hashtables provide O(1) runtime IF

HASH TABLES

- A large data set M with a smaller set that should be saved, D
- A hash function maps M onto D
- It should run in $O(1)$ time
- It should distribute into all of the available spots evenly
- Hashtables provide $O(1)$ runtime IF
- Collisions are not a problem
- Decrease the chance of collisions by increasing the amount of memory

HASH TABLES

- A large data set M with a smaller set that should be saved, D
- A hash function maps M onto D
- It should run in $O(1)$ time
- It should distribute into all of the available spots evenly
- Hashtables provide $O(1)$ runtime IF
- Collisions are not a problem
- Decrease the chance of collisions by increasing the amount of memory
- Resizing is costly

DESIGN DECISION PROBLEM

- Think about runtime

DESIGN DECISION PROBLEM

- Think about runtime
- Memory constraints

DESIGN DECISION PROBLEM

- Think about runtime
- Memory constraints
- Function prioritizing

DESIGN DECISION PROBLEM

- Think about runtime
- Memory constraints
- Function prioritizing
- Experimental considerations

NEXT CLASS

- Exam!

