
CSE 332 
JULY 12TH – HASHING AND EXAM 
REVIEW 



ADMINISTRIVIA 
•  Exam review session 

•  CSE 403: Thursday 3:30 – 5:00 



ADMINISTRIVIA 
•  Exam review session 

•  CSE 403: Thursday 3:30 – 5:00 
•  P2 is out 



ADMINISTRIVIA 
•  Exam review session 

•  CSE 403: Thursday 3:30 – 5:00 
•  P2 is out 

•  Checkpoint next Wednesday 



ADMINISTRIVIA 
•  Exam review session 

•  CSE 403: Thursday 3:30 – 5:00 
•  P2 is out 

•  Checkpoint next Wednesday 
•  Definitely have Ckpt1 passing 



ADMINISTRIVIA 
•  Exam review session 

•  CSE 403: Thursday 3:30 – 5:00 
•  P2 is out 

•  Checkpoint next Wednesday 
•  Definitely have Ckpt1 passing 
•  Chpt2 is a reasonable goal 
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TODAY’S LECTURE 
•  Hashing 

•  Double hashing 
•  Conclusion 

•  Exam Review 
•  List of topics and things to know 



HASHING 
•  Introduction 

•  Suppose there is a set of data M 
•  Any data we might want to store is a 

member of this set. For example, M might 
be the set of all strings 

•  There is a set of data that we actually 
care about storing D, where D << M 

•  For an English Dictionary, D might be the 
set of English words 



HASHING 
•  Memory: The Hash Table 

•  Consider an array of size c * D 
•  Each index in the array corresponds to some 

element in M that we want to store. 
•  The data in D does not need any particular 

ordering. 



•  The Hash Function maps the large space 
M to our target space D. 

•  We want our hash function to do the 
following: 
•  Be repeatable: H(x) = H(x) every run 
•  Be equally distributed: For all y,z in D, 
P(H(y)) = P(H(z))!

•  Run in constant time: H(x) = O(1)!

HASH FUNCTIONS 



HASH FUNCTION 
•  You will not have to produce hash 

functions, but you should recognize good 
ones 
•  They run in constant time 
•  They evenly distribute the data 
•  They return an integer 

•  These hash functions are chosen in 
advance, you should not pick a hash 
function relative to your data 
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COLLISIONS 
•  Probing 

•  Linear probing 
•  Try the appropriate hash table row first 
•  Increase the index by one until a spot is 

found 
•  Guaranteed to find a spot if it is available 
•  If the array is too full, its operations reach 

O(n) time 
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COLLISIONS 
•  Probing 

•  Quadratic Probing 
•  Rather than increasing by one each time, we 

increase by the squares 
•  k+1, k+4, k+9, k+16, k+25 
•  Certain tables can cause secondary 

clustering 
•  Can fail to insert if the table is over half full 
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COLLISIONS 
•  Chaining 

•  Rather than probing for an open position, we 
could just save multiple objects in the same 
position 

•  Some data structure is necessary here 
•  Commonly a linked list, AVL tree or secondary 

hash table. 
•  Resizing isn’t necessary, but if you don’t, you 

will get O(n) runtime. 



LOAD FACTOR 
•  Linear Probing?  0.25 < λ < 0.5 
•  Quadratic Probing? 0.10 < λ < 0.30 
•  Secondary Hashing? 0.25 < λ < 0.5 
•  Chaining? 3.0 < λ < 10 
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DELETION 
•  How to delete from a hash table? 

•  Chaining: just remove the object from the 
underlying data structure 

•  Probing: Must be able to follow the path in order 
to find elements that have been added later 

•  Need to mark as deleted, but not treat as 
completely empty 
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LAZY DELETION 
•  Common strategy in difficult-to-delete 

data structures 
•  When you delete, mark the element as deleted, 

but maintain the data structure as-is 
•  Works well for AVL as well 
•  Can insert values into place if reinserted, just 

cannot return the associated value on a call to 
find 

•  Necessary for Probing (aka Open Addressing) 
collision methods 
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CHAINING 
•  What about chaining? What is a good 

data structure to use? 
•  Many implement with a simple linked list 
•  If the load factor is λ, what is the expected 

number of elements in a single bin? λ 
•  However, the expected maximum actually grows 

(roughly) logarithmically with table length 
•  The more elements we add, the higher chance 

that there is one bad bin 
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CHAINING 
•  Solutions 

•  Can perform resize when any bin reaches a 
certain size 

•  Overallocates memory, if unlucky 
•  Preserves O(1) guarantee, however 
•  Downsizing is also difficult to calculate 

•  Make the underlying data structure more efficient 
•  AVL is surprisingly common 
•  Hash table is also common 
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CHAINING 
•  Hash of hashes 

•  Suppose we want a collision with probability 1/N 
•  How big would our table need to be for open 

addressing? N2 

•  What if we use a hashtable of hashtables 
•  Let the first table size be N 
•  Second tables are dynamically allocated (they 

will grow if they’re a heavy-hitter) 
•  If we still want 1/N collision probability, how 

large is the table? N2 but N is almost always a 
constant 

•  Some constant number have log n memory, but 
this is O(n) memory usage overall! 
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HASHTABLE IMPLEMENTATION 
•  Hashtables implement dictionaries 

•  <Key, Value> pairs 
•  Don’t allow duplicate keys  
•  Keys with the same “value” must have the same hash 

code 
•  For open addressing, stored either as an array of 

<key,value> class objects, or as two parallel arrays, 
one of keys and the other of values 
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HASHTABLE IMPLEMENTATION 
•  Resizing 

•  Only get O(1) operations if the table is well-
maintained 

•  Easy to get good runtimes, if you don’t consider 
memory 

•  bigO analysis can apply to memory consumption in 
the same way it applies to clock cycles 

•  Resizing takes O(n) extra memory, because you 
need to maintain the original hash table while you 
build the second. 
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HASHTABLE IMPLEMENTATION 
•  Resizing 

•  Iterate through the table (these are not in any 
meaningful order) 

•  Insert each of the <k,v> pairs into the new hashtable 
(which may be larger or smaller) 

•  Move pointers to new hash table 
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HASHTABLE IMPLEMENTATION 
•  Assorted things 

•  Prime table sizes  
•  Usually keep an array of all the primes that roughly double 

in size precalculated 
•  Finding primes is actually very computationally difficult, 
•  If n is large enough, finding the new prime can be the most 

consuming portion of the resize  
•  If a.equals(b) then a.hashcode() == b.hashcode() 
•  Hardware constraints, even if you have lots of memory, 

over allocating fails to take advantage of spatial locality 
and can be problematic 



HASHTABLE TAKEAWAYS 
•  Provide constant time find(k), insert(k,v) and delete(k) 

provided the structure is well maintained!



HASHTABLE TAKEAWAYS 
•  Provide constant time find(k), insert(k,v) and delete(k) 

provided the structure is well maintained 

•  Load factor is the primary determinant of runtime 



HASHTABLE TAKEAWAYS 
•  Provide constant time find(k), insert(k,v) and delete(k) 

provided the structure is well maintained 

•  Load factor is the primary determinant of runtime 

•  Two approaches, probing v. chaining 



HASHTABLE TAKEAWAYS 
•  Provide constant time find(k), insert(k,v) and delete(k) 

provided the structure is well maintained 

•  Load factor is the primary determinant of runtime 

•  Two approaches, probing v. chaining 

•  Primary and Secondary clustering 



HASHTABLE TAKEAWAYS 
•  Provide constant time find(k), insert(k,v) and delete(k) 

provided the structure is well maintained 

•  Load factor is the primary determinant of runtime 

•  Two approaches, probing v. chaining 

•  Primary and Secondary clustering 

•  Which chaining data structure do you use? 



HASHTABLE TAKEAWAYS 
•  Provide constant time find(k), insert(k,v) and delete(k) 

provided the structure is well maintained 

•  Load factor is the primary determinant of runtime 

•  Two approaches, probing v. chaining 

•  Primary and Secondary clustering 

•  Which chaining data structure do you use? 

•  Easy interview question answer, just be ready to explain 
how your data structure reacts to memory constraints 



EXAM FRIDAY 
•  Topics 

•  Definitions 
•  Stacks and Queues 
•  Heaps 
•  Runtime Analysis 
•  Dictionaries 
•  BSTs 
•  B-Trees 

•  AVL Trees 
•  Hash Tables 
•  Tries 
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DEFINITIONS 
•  Important terms 

•  Abstract Data Type 
•  Example: Dictionary 

•  Supports functions: insert, find, delete 
•  Has expected behavior 

•  Data Structure 
•  Language independent structure which 

implements an ADT 
•  Example: AVL tree 
•  Can be analyzed asymptotically 
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DEFINITIONS 
•  Important terms 

•  Implementation 
•  Low-level design decisions 
•  Language specific 

•  Example 
•  The Queue ADT supports enqueue, dequeue 

and front. 
•  Arrays and Linked Lists are examples of the 

data structures 
•  Implementation: front and back pointers 
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STACKS AND QUEUES 
•  Our first two ADTs 

•  Stack: 
•  Supports: push(), pop(), top() 
•  LIFO order 

•  Queue: 
•  Supports: enqueue(), dequeue(), front() 
•  FIFO order 
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STACKS AND QUEUES 
•  Data structure choices 

•  Arrays and Linked Lists 
•  Considerations 

•  Memory usage 
•  Ease of implementation 
•  Resizing time 

•  Runtimes: 
•  O(1) for all functions 
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HEAPS 
•  Priority Queue ADT 

•  Supports: insert(), findMin(), deleteMin(), 
changePriority() 

•  Data is stored in priority, value pairs 
•  In this class, we use the min-heap, where a lower 

value means it should dequeue first 
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HEAPS 
•  Data Structure 

•  Heap 
•  Complete binary tree 
•  Heap property 

•  Implementation 
•  Array 
•  Find parents/children arithmetically 

•  Runtimes 
•  Insert: O(log n), findMin: O(1), deleteMin O(log n) 
•  ChangePriority: O(log n) 
•  buildHeap, O(n) 
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RUNTIME ANALYSIS 
•  Counting the number of operations 

•  Comparisons, mathematical operations, assignments  
•  For loops and while statements 

•  Count the number of times relevant code is executed 
•  Important summations 

•  Sum of all numbers from 1 to n 
•  Sum of the powers of two 
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RUNTIME ANALYSIS 
•  Asymptotic Analysis 

•  Best-case, worst-case, average-case 
•  Usually we discuss worst-case complexity 
•  If we increase the input size, how does the 

computation time change 
•  BigO notation 

•  Upper bound for a given function 
•  f(n) = O(g(n) if there exists a c and n0 for which 

f(n) < c*g(n) for all n > n0 
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RUNTIME ANALYSIS 
•  Recurrences 

•  Way in which we approach recursive functions 
•  Separate into recursive and non-recursive 
•  Calculate the runtimes for non-recursive and base 

cases 
•  Produce the recurrence 
•  Solve the recurrence by rolling out, using a graphical 

tree or using the master theorem 
•  Provide the bigO asymptotic bounds 
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RUNTIME ANALYSIS 
•  Amortized analysis 

•  When computations come at predictable times but are 
very expensive 

•  The amortized runtime is the time a method takes to 
run n consecutive operations divided by n. 

•  This is different than best-case/worst-case 
•  Array resizing was the prominent example 
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RUNTIME ANALYSIS 
•  Basic ideas 

•  O(1): Input size has no effect on runtime 
•  O(log n): doubling the input increases the runtime by 

some constant amount 
•  O(n): linear time, each additional input increases 

execution time by a constant amount 
•  O(n2): doubling the input increases the runtime by a 

factor of 4. 
•  O(2n): exponential, increasing the input by one 

doublies the runtime 
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DICTIONARIES 
•  ADT 

•  Supports the following functions 
•  Insert(key k, value v) 
•  find(key k) 
•  delete(key k) 

•  Data is stored in key, value pairs 
•  In this course, duplicate keys are not allowed 
•  Most data structures can implement a dictionary 
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BINARY SEARCH TREES 
•  Binary trees 
•  Nodes with two children 
•  Maintains search property 

•  All values in the left subtree must be less than the parent 
•  All values in the right subtree must be greater than the 

parent 
•  With each increase in height, the number of nodes in a tree 

roughly doubles 
•  A completely full tree has 2h-1 nodes  
•  Roughly half of a binary search tree are nodes 
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AVL TREES 
•  Specific type of binary search tree 
•  Still must implement binary search 
•  Nodes in AVL trees have two extra fields, height and 

balance 
•  Balance = | height(left) – height(right) | 
•  Balance for each node must be less than or equal to 1 
•  Trees with this condition still have O(log n) height 
•  No covering delete in this course 
•  Find: O(log n): Insert O(log n) 
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AVL ROTATIONS 
•  AVL Rotations occur when an insertion makes a node 

out of balance 
•  Relative to the node that is unbalanced, there are four 

rotations depending on which grandchild received the new 
node. 

•  Left-left and right right rotations involve the child of the 
affected node being rotated up into position 

•  Left-right and right-left rotations involve the grandchild being 
rotated up into position. The grandparent and parent 
become the two children 

•  It is important that these rotations preserve BST property 
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B-PLUS TREES 
•  Memory is not the equal access object that traditional 

theory discusses 
•  Memory is broken up into pages 
•  Some pages are on disk, others are in cache 
•  Need a data structure to minimize disk accesses 

•  Data structure 

•  Two types of nodes, signposts and leaves 
•  Signposts have between M/2 and M children, where M 

makes the signpost object as large as possible while still 
fitting in one page 

•  Leaves have between L/2 and L pieces of sorted data and a 
pointer to the next leaf 

•  Root is exempt from minimums 
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B-PLUS TREES 
•  Inserting 

•  Add in sorted order 
•  If you fail, break the leaf into two 
•  If the signpost cannot fit another node, recursively try to add 

nodes back up to the root until a signpost has room  
•  Find 

•  Signposts indicate where key,value pairs are by markers in 
their node, a child is between two values 

•  Traverse down the tree to the bottom 
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B-PLUS TREES 
•  Delete 

•  If a deletion causes a leaf to go less than L/2 in size 
•  Try to adopt if we can (changing signposts if necessary) 
•  If not, merge leaves together 
•  Recursively merge signposts together as necessary in the 

path back to the root 
•  Gives us the most use out of a single disk access 

•  Commonly used for databases because it allows good disk 
storage and easy retrieval of keys in a range 
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HASH TABLES 
•  A large data set M with a smaller set that should be 

saved, D 

•  A hash function maps M onto D 
•  It should run in O(1) time 
•  It should distribute into all of the available spots evenly 

•  Hashtables provide O(1) runtime IF 
•  Collisions are not a problem 
•  Decrease the chance of collisions by increasing the 

amount of memory 
•  Resizing is costly 
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DESIGN DECISION PROBLEM 
•  Think about runtime 
•  Memory constraints 
•  Function prioritizing 
•  Experimental considerations 

 



NEXT CLASS 
•  Exam! 

 


