CSE 332

JULY 127TH - HASHING AND EXAM
REVIEW




ADMINISTRIVIA

« Exam review session
« CSE 403: Thursday 3:30 — 5:00




ADMINISTRIVIA

 Exam review session

« CSE 403: Thursday 3:30 — 5:00
 P2is out




ADMINISTRIVIA

 Exam review session

« CSE 403: Thursday 3:30 — 5:00
 P2is out

« Checkpoint next Wednesday




ADMINISTRIVIA

 Exam review session

« CSE 403: Thursday 3:30 — 5:00
 P2is out

« Checkpoint next Wednesday
 Definitely have Ckpt1 passing




ADMINISTRIVIA

 Exam review session

« CSE 403: Thursday 3:30 — 5:00
 P2is out

« Checkpoint next Wednesday
 Definitely have Ckpt1 passing
« Chpt2 is a reasonable goal




TODAY’S LECTURE

 Hashing




TODAY’S LECTURE

 Hashing
* Double hashing




TODAY’S LECTURE

 Hashing

* Double hashing
e Conclusion




TODAY’S LECTURE

 Hashing

* Double hashing
e Conclusion
« Exam Review




TODAY’S LECTURE

 Hashing

* Double hashing
e Conclusion
« Exam Review

* List of topics and things to know




HASHING

* Introduction

» Suppose there is a set of data M

* Any data we might want to store is a
member of this set. For example, M might
be the set of all strings

* There is a set of data that we actually
care about storing D, where D << M

* For an English Dictionary, D might be the
set of English words




HASHING
« Memory: The Hash Table

« Consider an array of size ¢ * D

« Each index in the array corresponds to some
element in M that we want to store.

* The data in D does not need any particular
ordering.




HASH FUNCTIONS

 The Hash Function maps the large space
M to our target space D.

 We want our hash function to do the
following:
- Be repeatable: H(x) = H(x) every run
* Be equally distributed: For all y,z in D,
P(H(y)) = P(H(z))
* Runin constanttime: H(x) = 0O(1)




HASH FUNCTION

* You will not have to produce hash
functions, but you should recognize good
ones

* They run in constant time
» They evenly distribute the data

* They return an integer

 These hash functions are chosen in
advance, you should not pick a hash
function relative to your data




COLLISIONS

 Hash table methods are defined by how
they handle collisions




COLLISIONS

 Hash table methods are defined by how
they handle collisions

 Two main approaches

* Probing
 Chaining




COLLISIONS
* Probing

 Linear probing




COLLISIONS
* Probing

 Linear probing
* Try the appropriate hash table row first

* Increase the index by one until a spot is
found

« Guaranteed to find a spot if it is available

* If the array is too full, its operations reach
O(n) time




COLLISIONS

* Probing
* Quadratic Probing




COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

« k+1, k+4, k+9, k+16, k+25

» Certain tables can cause secondary
clustering

« Can fail to insert if the table is over half full




COLLISIONS

* Probing
* Secondary Hashing




COLLISIONS

* Probing
* Secondary Hashing

 If two keys collide in the hash table, then a
secondary hash indicates the probing size

* Need to be careful, possible for infinite loops with a
very empty array




COLLISIONS

* Probing
* Secondary Hashing

 If two keys collide in the hash table, then a
secondary hash indicates the probing size

* Need to be careful, possible for infinite loops with a
very empty array




COLLISIONS
« Chaining




COLLISIONS
« Chaining

Rather than probing for an open position, we
could just save multiple objects in the same
position

Some data structure is necessary here

Commonly a linked list, AVL tree or secondary
hash table.

Resizing isn’t necessary, but if you don’t, you
will get O(n) runtime.




LOAD FACTOR

* Linear Probing? 0.25<A<0.5

« Quadratic Probing? 0.10 <A <0.30
« Secondary Hashing? 0.25<A<0.5
 Chaining? 3.0<A<10




DELETION

 How to delete from a hash table?




DELETION

 How to delete from a hash table?

« Chaining: just remove the object from the
underlying data structure




DELETION

 How to delete from a hash table?

« Chaining: just remove the object from the
underlying data structure

* Probing:




DELETION

 How to delete from a hash table?
» Chaining: just remove the object from the
underlying data structure

* Probing: Must be able to follow the path in order
to find elements that have been added later




DELETION

 How to delete from a hash table?

« Chaining: just remove the object from the
underlying data structure

* Probing: Must be able to follow the path in order
to find elements that have been added later

 Need to mark as deleted, but not treat as
completely empty




LAZY DELETION

« Common strategy in difficult-to-delete
data structures




LAZY DELETION

« Common strategy in difficult-to-delete
data structures

- When you delete, mark the element as deleted,
but maintain the data structure as-is




LAZY DELETION

« Common strategy in difficult-to-delete
data structures

- When you delete, mark the element as deleted,
but maintain the data structure as-is

 Works well for AVL as well




LAZY DELETION

« Common strategy in difficult-to-delete
data structures

- When you delete, mark the element as deleted,
but maintain the data structure as-is
 Works well for AVL as well

« Can insert values into place if reinserted, just
cannot return the associated value on a call to
find




LAZY DELETION

« Common strategy in difficult-to-delete
data structures

- When you delete, mark the element as deleted,
but maintain the data structure as-is
 Works well for AVL as well

« Can insert values into place if reinserted, just
cannot return the associated value on a call to
find

* Necessary for Probing (aka Open Addressing)
collision methods




CHAINING

 What about chaining? What is a good
data structure to use?




CHAINING

 What about chaining? What is a good
data structure to use?

* Many implement with a simple linked list




CHAINING

 What about chaining? What is a good
data structure to use?

* Many implement with a simple linked list

 If the load factor is A, what is the expected
number of elements in a single bin?




CHAINING

 What about chaining? What is a good
data structure to use?

* Many implement with a simple linked list

 If the load factor is A, what is the expected
number of elements in a single bin? A




CHAINING

 What about chaining? What is a good
data structure to use?

Many implement with a simple linked list

If the load factor is A, what is the expected
number of elements in a single bin? A

However, the expected maximum actually grows
(roughly) logarithmically with table length




CHAINING

 What about chaining? What is a good
data structure to use?

Many implement with a simple linked list

If the load factor is A, what is the expected
number of elements in a single bin? A

However, the expected maximum actually grows
(roughly) logarithmically with table length




CHAINING

 What about chaining? What is a good
data structure to use?

Many implement with a simple linked list

If the load factor is A, what is the expected
number of elements in a single bin? A

However, the expected maximum actually grows
(roughly) logarithmically with table length

The more elements we add, the higher chance
that there is one bad bin




CHAINING

 Solutions

« Can perform resize when any bin reaches a
certain size




CHAINING

 Solutions

« Can perform resize when any bin reaches a
certain size

* Qverallocates memory, if unlucky




CHAINING

 Solutions

« Can perform resize when any bin reaches a
certain size

* Qverallocates memory, if unlucky
* Preserves O(1) guarantee, however




CHAINING

 Solutions

« Can perform resize when any bin reaches a
certain size

* Qverallocates memory, if unlucky
* Preserves O(1) guarantee, however
* Downsizing is also difficult to calculate




CHAINING

 Solutions

« Can perform resize when any bin reaches a
certain size

* Qverallocates memory, if unlucky
* Preserves O(1) guarantee, however
* Downsizing is also difficult to calculate

« Make the underlying data structure more efficient




CHAINING

 Solutions

« Can perform resize when any bin reaches a
certain size

* Qverallocates memory, if unlucky
* Preserves O(1) guarantee, however
* Downsizing is also difficult to calculate
« Make the underlying data structure more efficient
* AVL is surprisingly common




CHAINING

 Solutions

« Can perform resize when any bin reaches a
certain size

* Qverallocates memory, if unlucky
* Preserves O(1) guarantee, however
* Downsizing is also difficult to calculate
« Make the underlying data structure more efficient
* AVL is surprisingly common
» Hash table is also common




CHAINING

« Hash of hashes




CHAINING

« Hash of hashes

« Suppose we want a collision with probability 1/N




CHAINING

« Hash of hashes

« Suppose we want a collision with probability 1/N

* How big would our table need to be for open
addressing?




CHAINING

« Hash of hashes

« Suppose we want a collision with probability 1/N

* How big would our table need to be for open
addressing? N2




CHAINING

« Hash of hashes

« Suppose we want a collision with probability 1/N

* How big would our table need to be for open
addressing? N2

 What if we use a hashtable of hashtables




CHAINING

« Hash of hashes

« Suppose we want a collision with probability 1/N

* How big would our table need to be for open
addressing? N2

 What if we use a hashtable of hashtables
* Let the first table size be N




CHAINING

« Hash of hashes

Suppose we want a collision with probability 1/N

How big would our table need to be for open
addressing? N2

What if we use a hashtable of hashtables
* Let the first table size be N

« Second tables are dynamically allocated (they
will grow if they’re a heavy-hitter)




CHAINING

« Hash of hashes

Suppose we want a collision with probability 1/N

How big would our table need to be for open
addressing? N2

What if we use a hashtable of hashtables
* Let the first table size be N

« Second tables are dynamically allocated (they
will grow if they’re a heavy-hitter)

 If we still want 1/N collision probability, how
large is the table?




CHAINING

« Hash of hashes

Suppose we want a collision with probability 1/N
How big would our table need to be for open
addressing? N2
What if we use a hashtable of hashtables

* Let the first table size be N

« Second tables are dynamically allocated (they
will grow if they’re a heavy-hitter)

 If we still want 1/N collision probability, how
large is the table? N2 but N is almost always a
constant




CHAINING

« Hash of hashes

Suppose we want a collision with probability 1/N

How big would our table need to be for open
addressing? N2

What if we use a hashtable of hashtables

Let the first table size be N

Second tables are dynamically allocated (they
will grow if they’re a heavy-hitter)

If we still want 1/N collision probability, how
large is the table? N2 but N is almost always a
constant

Some constant number have log n memory, but
this is O(n) memory usage overall!




HASHTABLE IMPLEMENTATION

 Hashtables implement dictionaries




HASHTABLE IMPLEMENTATION

 Hashtables implement dictionaries

- <Key, Value> pairs




HASHTABLE IMPLEMENTATION

 Hashtables implement dictionaries

- <Key, Value> pairs
« Don't allow duplicate keys




HASHTABLE IMPLEMENTATION

 Hashtables implement dictionaries

- <Key, Value> pairs
« Don't allow duplicate keys

« Keys with the same “value”™ must have the same hash
code




HASHTABLE IMPLEMENTATION

 Hashtables implement dictionaries

<Key, Value> pairs
Don’t allow duplicate keys

Keys with the same “value” must have the same hash
code

For open addressing, stored either as an array of
<key,value> class objects, or as two parallel arrays,
one of keys and the other of values




HASHTABLE IMPLEMENTATION

* Resizing




HASHTABLE IMPLEMENTATION

* Resizing

* Only get O(1) operations if the table is well-
maintained




HASHTABLE IMPLEMENTATION

* Resizing
* Only get O(1) operations if the table is well-
maintained

- Easy to get good runtimes, if you don’t consider
memory




HASHTABLE IMPLEMENTATION

* Resizing

Only get O(1) operations if the table is well-
maintained

Easy to get good runtimes, if you don’t consider
memory

bigO analysis can apply to memory consumption in
the same way it applies to clock cycles




HASHTABLE IMPLEMENTATION

* Resizing

Only get O(1) operations if the table is well-
maintained

Easy to get good runtimes, if you don’t consider
memory

bigO analysis can apply to memory consumption in
the same way it applies to clock cycles

Resizing takes O(n) extra memory, because you
need to maintain the original hash table while you
build the second.




HASHTABLE IMPLEMENTATION

* Resizing

« lterate through the table (these are not in any
meaningful order)




HASHTABLE IMPLEMENTATION

* Resizing
« lterate through the table (these are not in any

meaningful order)

* Insert each of the <k,v> pairs into the new hashtable
(which may be larger or smaller)

* Move pointers to new hash table




HASHTABLE IMPLEMENTATION

« Assorted things




HASHTABLE IMPLEMENTATION

« Assorted things

 Prime table sizes

Usually keep an array of all the primes that roughly double
in size precalculated




HASHTABLE IMPLEMENTATION

« Assorted things

 Prime table sizes

Usually keep an array of all the primes that roughly double
in size precalculated

Finding primes is actually very computationally difficult,




HASHTABLE IMPLEMENTATION
« Assorted things

 Prime table sizes

« Usually keep an array of all the primes that roughly double
in size precalculated

* Finding primes is actually very computationally difficult,

« If nis large enough, finding the new prime can be the most
consuming portion of the resize




HASHTABLE IMPLEMENTATION
« Assorted things

 Prime table sizes

« Usually keep an array of all the primes that roughly double
in size precalculated

* Finding primes is actually very computationally difficult,

« If nis large enough, finding the new prime can be the most
consuming portion of the resize

« If a.equals(b) then a.hashcode() == b.hashcode()




HASHTABLE IMPLEMENTATION

« Assorted things

 Prime table sizes

« Usually keep an array of all the primes that roughly double
in size precalculated

* Finding primes is actually very computationally difficult,
« If nis large enough, finding the new prime can be the most
consuming portion of the resize
 If a.equals(b) then a.hashcode() == b.hashcode()

- Hardware constraints, even if you have lots of memory,
over allocating fails to take advantage of spatial locality
and can be problematic




HASHTABLE TAKEAWAYS

* Provide constant time find(k), insert(k,v) and delete(k)
provided the structure is well maintained




HASHTABLE TAKEAWAYS

* Provide constant time find(k), insert(k,v) and delete(k)
provided the structure is well maintained

« Load factor is the primary determinant of runtime




HASHTABLE TAKEAWAYS

* Provide constant time find(k), insert(k,v) and delete(k)
provided the structure is well maintained

« Load factor is the primary determinant of runtime

« Two approaches, probing v. chaining




HASHTABLE TAKEAWAYS

* Provide constant time find(k), insert(k,v) and delete(k)
provided the structure is well maintained

« Load factor is the primary determinant of runtime
« Two approaches, probing v. chaining

* Primary and Secondary clustering




HASHTABLE TAKEAWAYS

* Provide constant time find(k), insert(k,v) and delete(k)
provided the structure is well maintained

« Load factor is the primary determinant of runtime
« Two approaches, probing v. chaining
* Primary and Secondary clustering

« Which chaining data structure do you use?




HASHTABLE TAKEAWAYS

* Provide constant time find(k), insert(k,v) and delete(k)
provided the structure is well maintained

« Load factor is the primary determinant of runtime
« Two approaches, probing v. chaining

* Primary and Secondary clustering

« Which chaining data structure do you use?

« Easy interview question answer, just be ready to explain
how your data structure reacts to memory constraints




EXAM FRIDAY

 Topics
« Definitions * AVL Trees
 Stacks and Queues » Hash Tables
* Heaps * Tries

* Runtime Analysis
* Dictionaries

BSTs
B-Trees




DEFINITIONS

* Important terms




DEFINITIONS

* Important terms
» Abstract Data Type




DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary




DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary
« Supports functions: insert, find, delete
« Has expected behavior




DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary
« Supports functions: insert, find, delete
« Has expected behavior

« Data Structure




DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary
« Supports functions: insert, find, delete
« Has expected behavior
- Data Structure

* Language independent structure which
Implements an ADT




DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary
« Supports functions: insert, find, delete
« Has expected behavior

« Data Structure

* Language independent structure which
Implements an ADT

 Example: AVL tree




DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary
« Supports functions: insert, find, delete
« Has expected behavior

« Data Structure

* Language independent structure which
Implements an ADT

 Example: AVL tree
« Can be analyzed asymptotically




DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions




DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions
« Language specific




DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions
« Language specific
 Example




DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions
« Language specific
 Example

* The Queue ADT supports enqueue, dequeue
and front.




DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions
« Language specific
 Example

* The Queue ADT supports enqueue, dequeue
and front.

* Arrays and Linked Lists are examples of the
data structures




DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions
« Language specific
 Example
* The Queue ADT supports enqueue, dequeue
and front.

* Arrays and Linked Lists are examples of the
data structures

« Implementation: front and back pointers




STACKS AND QUEUES

 Our first two ADTs




STACKS AND QUEUES

 Our first two ADTs
« Stack:




STACKS AND QUEUES

e Our first two ADTs
« Stack:
- Supports: push(), pop(), top()




STACKS AND QUEUES

 Our first two ADTs
« Stack:

» Supports: push(), pop(), top()
* LIFO order




STACKS AND QUEUES

 Our first two ADTs
« Stack:

» Supports: push(), pop(), top()
* LIFO order

* Queue:




STACKS AND QUEUES

 Our first two ADTs
« Stack:

» Supports: push(), pop(), top()
* LIFO order

* Queue:
» Supports: enqueue(), dequeue(), front()




STACKS AND QUEUES

 Our first two ADTs
« Stack:

» Supports: push(), pop(), top()
* LIFO order

 Queue:

» Supports: enqueue(), dequeue(), front()
* FIFO order




STACKS AND QUEUES

 Data structure choices




STACKS AND QUEUES

 Data structure choices
* Arrays and Linked Lists




STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists
* Considerations




STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists

* Considerations
 Memory usage




STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists
» Considerations
* Memory usage
« Ease of implementation




STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists

» Considerations
* Memory usage
« Ease of implementation
* Resizing time




STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists

» Considerations
* Memory usage
« Ease of implementation
* Resizing time

* Runtimes:




STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists
» Considerations
* Memory usage
« Ease of implementation
* Resizing time
* Runtimes:
* O(1) for all functions




HEAPS

* Priority Queue ADT




HEAPS

* Priority Queue ADT

* Supports: insert(), findMin(), deleteMin(),
changePriority()




HEAPS

* Priority Queue ADT

* Supports: insert(), findMin(), deleteMin(),
changePriority()

» Data is stored in priority, value pairs




HEAPS

* Priority Queue ADT

« Supports: insert(), findMin(), deleteMin(),
changePriority()
» Data is stored in priority, value pairs

* In this class, we use the min-heap, where a lower
value means it should dequeue first




HEAPS

 Data Structure
* Heap




HEAPS

 Data Structure

* Heap
« Complete binary tree




HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property




HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property

* Implementation




HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property

* Implementation
* Array




HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property
* Implementation
* Array
* Find parents/children arithmetically




HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property
* Implementation
* Array
* Find parents/children arithmetically

 Runtimes




HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property
* Implementation
* Array
* Find parents/children arithmetically
* Runtimes
 Insert: O(log n), findMin: O(1), deleteMin O(log n)
« ChangePriority: O(log n)




HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property
* Implementation
* Array
* Find parents/children arithmetically
* Runtimes
 Insert: O(log n), findMin: O(1), deleteMin O(log n)
« ChangePriority: O(log n)
* buildHeap, O(n)




RUNTIME ANALYSIS

 Counting the number of operations




RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments




RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments
 For loops and while statements




RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments
 For loops and while statements

 Count the number of times relevant code is executed




RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments
 For loops and while statements

« Count the number of times relevant code is executed
* Important summations




RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments
 For loops and while statements

 Count the number of times relevant code is executed
* Important summations

Sum of all numbers from 1 to n




RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments
 For loops and while statements

« Count the number of times relevant code is executed
* Important summations

* Sum of all numbers from 1 to n
« Sum of the powers of two




RUNTIME ANALYSIS

 Asymptotic Analysis




RUNTIME ANALYSIS

 Asymptotic Analysis

- Best-case, worst-case, average-case




RUNTIME ANALYSIS

 Asymptotic Analysis
- Best-case, worst-case, average-case
» Usually we discuss worst-case complexity




RUNTIME ANALYSIS

 Asymptotic Analysis

Best-case, worst-case, average-case
Usually we discuss worst-case complexity

If we increase the input size, how does the
computation time change




RUNTIME ANALYSIS

 Asymptotic Analysis
- Best-case, worst-case, average-case

« Usually we discuss worst-case complexity

* If we increase the input size, how does the
computation time change

« BigO notation




RUNTIME ANALYSIS

 Asymptotic Analysis
- Best-case, worst-case, average-case

« Usually we discuss worst-case complexity

* If we increase the input size, how does the
computation time change

« BigO notation

« Upper bound for a given function




RUNTIME ANALYSIS

 Asymptotic Analysis
- Best-case, worst-case, average-case

« Usually we discuss worst-case complexity

* If we increase the input size, how does the
computation time change

« BigO notation

« Upper bound for a given function

« f(n) = O(g(n) if there exists a c and n, for which
f(n) < c*g(n) forall n >n,




RUNTIME ANALYSIS

* Recurrences




RUNTIME ANALYSIS

* Recurrences

« Way in which we approach recursive functions




RUNTIME ANALYSIS

* Recurrences

« Way in which we approach recursive functions
« Separate into recursive and non-recursive




RUNTIME ANALYSIS

* Recurrences

« Way in which we approach recursive functions
« Separate into recursive and non-recursive

e (Calculate the runtimes for non-recursive and base
cases




RUNTIME ANALYSIS

* Recurrences

« Way in which we approach recursive functions
« Separate into recursive and non-recursive

e (Calculate the runtimes for non-recursive and base
cases

* Produce the recurrence




RUNTIME ANALYSIS

* Recurrences

« Way in which we approach recursive functions
« Separate into recursive and non-recursive

e (Calculate the runtimes for non-recursive and base
cases

* Produce the recurrence

« Solve the recurrence by rolling out, using a graphical
tree or using the master theorem




RUNTIME ANALYSIS

Recurrences

Way in which we approach recursive functions
Separate into recursive and non-recursive

Calculate the runtimes for non-recursive and base
cases

Produce the recurrence

Solve the recurrence by rolling out, using a graphical
tree or using the master theorem

Provide the bigO asymptotic bounds




RUNTIME ANALYSIS

« Amortized analysis




RUNTIME ANALYSIS

« Amortized analysis

«  When computations come at predictable times but are
very expensive




RUNTIME ANALYSIS

« Amortized analysis
«  When computations come at predictable times but are
very expensive

* The amortized runtime is the time a method takes to
run n consecutive operations divided by n.




RUNTIME ANALYSIS

« Amortized analysis
«  When computations come at predictable times but are
very expensive

* The amortized runtime is the time a method takes to
run n consecutive operations divided by n.

* This is different than best-case/worst-case




RUNTIME ANALYSIS

« Amortized analysis

When computations come at predictable times but are
very expensive

The amortized runtime is the time a method takes to
run n consecutive operations divided by n.

This is different than best-case/worst-case
Array resizing was the prominent example




RUNTIME ANALYSIS

« Basic ideas

* O(1): Input size has no effect on runtime




RUNTIME ANALYSIS

« Basic ideas

* O(1): Input size has no effect on runtime

* O(log n): doubling the input increases the runtime by
some constant amount




RUNTIME ANALYSIS

« Basic ideas

* O(1): Input size has no effect on runtime

* O(log n): doubling the input increases the runtime by
some constant amount

« O(n): linear time, each additional input increases
execution time by a constant amount




RUNTIME ANALYSIS

Basic ideas

O(1): Input size has no effect on runtime

O(log n): doubling the input increases the runtime by
some constant amount

O(n): linear time, each additional input increases
execution time by a constant amount

O(n?): doubling the input increases the runtime by a
factor of 4.




RUNTIME ANALYSIS

Basic ideas

O(1): Input size has no effect on runtime

O(log n): doubling the input increases the runtime by
some constant amount

O(n): linear time, each additional input increases
execution time by a constant amount

O(n?): doubling the input increases the runtime by a
factor of 4.

O(2"): exponential, increasing the input by one
doublies the runtime




DICTIONARIES

« ADT




DICTIONARIES

« ADT

Supports the following functions




DICTIONARIES

« ADT

Supports the following functions
Insert(key k, value v)




DICTIONARIES

« ADT

Supports the following functions
Insert(key k, value v)
find(key k)
delete(key k)




DICTIONARIES

« ADT

Supports the following functions
Insert(key k, value v)
find(key k)
delete(key k)

Data is stored in key, value pairs




DICTIONARIES

« ADT

« Supports the following functions
Insert(key k, value v)
find(key k)
« delete(key k)
- Data is stored in key, value pairs
* In this course, duplicate keys are not allowed




DICTIONARIES

« ADT

« Supports the following functions
Insert(key k, value v)
find(key k)
« delete(key k)
- Data is stored in key, value pairs
* In this course, duplicate keys are not allowed

« Most data structures can implement a dictionary




BINARY SEARCH TREES

* Binary trees




BINARY SEARCH TREES

* Binary trees

* Nodes with two children




BINARY SEARCH TREES

* Binary trees
* Nodes with two children

 Maintains search property




BINARY SEARCH TREES

* Binary trees
* Nodes with two children

 Maintains search property

* All values in the left subtree must be less than the parent

» All values in the right subtree must be greater than the
parent




BINARY SEARCH TREES

* Binary trees
* Nodes with two children

 Maintains search property

* All values in the left subtree must be less than the parent
« All values in the right subtree must be greater than the
parent
« With each increase in height, the number of nodes in a tree
roughly doubles




BINARY SEARCH TREES

* Binary trees
* Nodes with two children

 Maintains search property

* All values in the left subtree must be less than the parent

« All values in the right subtree must be greater than the
parent
« With each increase in height, the number of nodes in a tree
roughly doubles

« A completely full tree has 2"-1 nodes




BINARY SEARCH TREES

* Binary trees
* Nodes with two children

 Maintains search property

* All values in the left subtree must be less than the parent

» All values in the right subtree must be greater than the
parent

« With each increase in height, the number of nodes in a tree
roughly doubles

« A completely full tree has 2"-1 nodes

 Roughly half of a binary search tree are nodes




AVL TREES

« Specific type of binary search tree




AVL TREES

« Specific type of binary search tree

« Still must implement binary search




AVL TREES

« Specific type of binary search tree
« Still must implement binary search

 Nodes in AVL trees have two extra fields, height and
balance




AVL TREES

« Specific type of binary search tree

« Still must implement binary search

 Nodes in AVL trees have two extra fields, height and
balance

« Balance = | height(left) — height(right) |




AVL TREES

« Specific type of binary search tree
« Still must implement binary search

 Nodes in AVL trees have two extra fields, height and
balance

« Balance = | height(left) — height(right) |

« Balance for each node must be less than or equal to 1




AVL TREES

« Specific type of binary search tree
« Still must implement binary search

 Nodes in AVL trees have two extra fields, height and
balance

« Balance = | height(left) — height(right) |
« Balance for each node must be less than or equal to 1

« Trees with this condition still have O(log n) height




AVL TREES

« Specific type of binary search tree
« Still must implement binary search

 Nodes in AVL trees have two extra fields, height and
balance

« Balance = | height(left) — height(right) |
« Balance for each node must be less than or equal to 1
« Trees with this condition still have O(log n) height

* No covering delete in this course




AVL TREES

« Specific type of binary search tree
« Still must implement binary search

 Nodes in AVL trees have two extra fields, height and
balance

« Balance = | height(left) — height(right) |

« Balance for each node must be less than or equal to 1
« Trees with this condition still have O(log n) height
 No covering delete in this course

* Find: O(log n): Insert O(log n)




AVL ROTATIONS

« AVL Rotations occur when an insertion makes a node
out of balance




AVL ROTATIONS

« AVL Rotations occur when an insertion makes a node
out of balance

« Relative to the node that is unbalanced, there are four
rotations depending on which grandchild received the new
node.




AVL ROTATIONS

« AVL Rotations occur when an insertion makes a node
out of balance

« Relative to the node that is unbalanced, there are four
rotations depending on which grandchild received the new
node.

« Left-left and right right rotations involve the child of the
affected node being rotated up into position




AVL ROTATIONS

« AVL Rotations occur when an insertion makes a node
out of balance

« Relative to the node that is unbalanced, there are four
rotations depending on which grandchild received the new
node.

« Left-left and right right rotations involve the child of the
affected node being rotated up into position

« Left-right and right-left rotations involve the grandchild being
rotated up into position. The grandparent and parent
become the two children




AVL ROTATIONS

« AVL Rotations occur when an insertion makes a node
out of balance

« Relative to the node that is unbalanced, there are four
rotations depending on which grandchild received the new
node.

« Left-left and right right rotations involve the child of the
affected node being rotated up into position

« Left-right and right-left rotations involve the grandchild being
rotated up into position. The grandparent and parent
become the two children

* |tis important that these rotations preserve BST property




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses

Memory is broken up into pages




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses

«  Memory is broken up into pages
- Some pages are on disk, others are in cache




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses

«  Memory is broken up into pages
- Some pages are on disk, others are in cache
* Need a data structure to minimize disk accesses




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses

«  Memory is broken up into pages

- Some pages are on disk, others are in cache

* Need a data structure to minimize disk accesses
« Data structure




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses

«  Memory is broken up into pages

- Some pages are on disk, others are in cache

* Need a data structure to minimize disk accesses
« Data structure

« Two types of nodes, signposts and leaves




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses
«  Memory is broken up into pages
- Some pages are on disk, others are in cache

 Need a data structure to minimize disk accesses
Data structure

« Two types of nodes, signposts and leaves

« Signposts have between M/2 and M children, where M

makes the signpost object as large as possible while still
fitting in one page




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses

«  Memory is broken up into pages

- Some pages are on disk, others are in cache

* Need a data structure to minimize disk accesses
« Data structure

« Two types of nodes, signposts and leaves

« Signposts have between M/2 and M children, where M
makes the signpost object as large as possible while still
fitting in one page

« Leaves have between L/2 and L pieces of sorted data and a
pointer to the next leaf




B-PLUS TREES

 Memory is not the equal access object that traditional
theory discusses

«  Memory is broken up into pages

- Some pages are on disk, others are in cache

* Need a data structure to minimize disk accesses
« Data structure

« Two types of nodes, signposts and leaves

« Signposts have between M/2 and M children, where M
makes the signpost object as large as possible while still
fitting in one page

« Leaves have between L/2 and L pieces of sorted data and a
pointer to the next leaf

* Root is exempt from minimums




B-PLUS TREES

* Inserting




B-PLUS TREES

* Inserting
 Add in sorted order




B-PLUS TREES

* Inserting

* Add in sorted order
If you fail, break the leaf into two




B-PLUS TREES

* Inserting

* Add in sorted order
 If you fail, break the leaf into two

If the signpost cannot fit another node, recursively try to add
nodes back up to the root until a signpost has room




B-PLUS TREES

* Inserting

* Add in sorted order
 If you fail, break the leaf into two

 |f the signpost cannot fit another node, recursively try to add
nodes back up to the root until a signpost has room

 Find




B-PLUS TREES

* Inserting

* Add in sorted order
 If you fail, break the leaf into two

 |f the signpost cannot fit another node, recursively try to add
nodes back up to the root until a signpost has room

 Find

« Signposts indicate where key,value pairs are by markers in
their node, a child is between two values




B-PLUS TREES

* Inserting

* Add in sorted order
 If you fail, break the leaf into two

 |f the signpost cannot fit another node, recursively try to add
nodes back up to the root until a signpost has room

 Find
- Signposts indicate where key,value pairs are by markers in
their node, a child is between two values
 Traverse down the tree to the bottom




B-PLUS TREES

e Delete




B-PLUS TREES

e Delete

If a deletion causes a leaf to go less than L/2 in size




B-PLUS TREES

e Delete

« |If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)




B-PLUS TREES

e Delete

« |If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)
« |If not, merge leaves together




B-PLUS TREES

e Delete

« |If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)
« |If not, merge leaves together

« Recursively merge signposts together as necessary in the
path back to the root




B-PLUS TREES

e Delete

« |If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)
« |If not, merge leaves together

« Recursively merge signposts together as necessary in the
path back to the root

» Gives us the most use out of a single disk access




B-PLUS TREES

e Delete

« |If a deletion causes a leaf to go less than L/2 in size
- Try to adopt if we can (changing signposts if necessary)

« |If not, merge leaves together

« Recursively merge signposts together as necessary in the
path back to the root

» Gives us the most use out of a single disk access

« Commonly used for databases because it allows good disk
storage and easy retrieval of keys in a range




HASH TABLES

 Alarge data set M with a smaller set that should be
saved, D




HASH TABLES

 Alarge data set M with a smaller set that should be
saved, D

* A hash function maps M onto D




HASH TABLES

 Alarge data set M with a smaller set that should be
saved, D

* A hash function maps M onto D

* It should run in O(1) time




HASH TABLES

 Alarge data set M with a smaller set that should be
saved, D

* A hash function maps M onto D

* It should runin O(1) time
It should distribute into all of the available spots evenly
« Hashtables provide O(1) runtime IF




HASH TABLES

 Alarge data set M with a smaller set that should be
saved, D

* A hash function maps M onto D

* It should runin O(1) time
It should distribute into all of the available spots evenly
« Hashtables provide O(1) runtime IF

« Collisions are not a problem

* Decrease the chance of collisions by increasing the
amount of memory




HASH TABLES

 Alarge data set M with a smaller set that should be
saved, D

* A hash function maps M onto D

* It should runin O(1) time
It should distribute into all of the available spots evenly
« Hashtables provide O(1) runtime IF

« Collisions are not a problem

* Decrease the chance of collisions by increasing the
amount of memory

Resizing is costly




DESIGN DECISION PROBLEM

 Think about runtime




DESIGN DECISION PROBLEM

* Think about runtime
 Memory constraints




DESIGN DECISION PROBLEM

* Think about runtime
 Memory constraints

* Function prioritizing




DESIGN DECISION PROBLEM

* Think about runtime
 Memory constraints
* Function prioritizing

 Experimental considerations




NEXT CLASS

« Exam!




