
CSE 332
JULY 12TH – HASHING AND EXAM
REVIEW

ADMINISTRIVIA
•  Exam review session

•  CSE 403: Thursday 3:30 – 5:00

ADMINISTRIVIA
•  Exam review session

•  CSE 403: Thursday 3:30 – 5:00
•  P2 is out

ADMINISTRIVIA
•  Exam review session

•  CSE 403: Thursday 3:30 – 5:00
•  P2 is out

•  Checkpoint next Wednesday

ADMINISTRIVIA
•  Exam review session

•  CSE 403: Thursday 3:30 – 5:00
•  P2 is out

•  Checkpoint next Wednesday
•  Definitely have Ckpt1 passing

ADMINISTRIVIA
•  Exam review session

•  CSE 403: Thursday 3:30 – 5:00
•  P2 is out

•  Checkpoint next Wednesday
•  Definitely have Ckpt1 passing
•  Chpt2 is a reasonable goal

TODAY’S LECTURE
•  Hashing

TODAY’S LECTURE
•  Hashing

•  Double hashing

TODAY’S LECTURE
•  Hashing

•  Double hashing
•  Conclusion

TODAY’S LECTURE
•  Hashing

•  Double hashing
•  Conclusion

•  Exam Review

TODAY’S LECTURE
•  Hashing

•  Double hashing
•  Conclusion

•  Exam Review
•  List of topics and things to know

HASHING
•  Introduction

•  Suppose there is a set of data M
•  Any data we might want to store is a

member of this set. For example, M might
be the set of all strings

•  There is a set of data that we actually
care about storing D, where D << M

•  For an English Dictionary, D might be the
set of English words

HASHING
•  Memory: The Hash Table

•  Consider an array of size c * D
•  Each index in the array corresponds to some

element in M that we want to store.
•  The data in D does not need any particular

ordering.

•  The Hash Function maps the large space
M to our target space D.

•  We want our hash function to do the
following:
•  Be repeatable: H(x) = H(x) every run
•  Be equally distributed: For all y,z in D,
P(H(y)) = P(H(z))!

•  Run in constant time: H(x) = O(1)!

HASH FUNCTIONS

HASH FUNCTION
•  You will not have to produce hash

functions, but you should recognize good
ones
•  They run in constant time
•  They evenly distribute the data
•  They return an integer

•  These hash functions are chosen in
advance, you should not pick a hash
function relative to your data

COLLISIONS
•  Hash table methods are defined by how

they handle collisions

COLLISIONS
•  Hash table methods are defined by how

they handle collisions
•  Two main approaches

•  Probing
•  Chaining

COLLISIONS
•  Probing

•  Linear probing

COLLISIONS
•  Probing

•  Linear probing
•  Try the appropriate hash table row first
•  Increase the index by one until a spot is

found
•  Guaranteed to find a spot if it is available
•  If the array is too full, its operations reach

O(n) time

COLLISIONS
•  Probing

•  Quadratic Probing

COLLISIONS
•  Probing

•  Quadratic Probing
•  Rather than increasing by one each time, we

increase by the squares
•  k+1, k+4, k+9, k+16, k+25
•  Certain tables can cause secondary

clustering
•  Can fail to insert if the table is over half full

COLLISIONS
•  Probing

•  Secondary Hashing

COLLISIONS
•  Probing

•  Secondary Hashing
•  If two keys collide in the hash table, then a

secondary hash indicates the probing size
•  Need to be careful, possible for infinite loops with a

very empty array

COLLISIONS
•  Probing

•  Secondary Hashing
•  If two keys collide in the hash table, then a

secondary hash indicates the probing size
•  Need to be careful, possible for infinite loops with a

very empty array

COLLISIONS
•  Chaining

COLLISIONS
•  Chaining

•  Rather than probing for an open position, we
could just save multiple objects in the same
position

•  Some data structure is necessary here
•  Commonly a linked list, AVL tree or secondary

hash table.
•  Resizing isn’t necessary, but if you don’t, you

will get O(n) runtime.

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30
•  Secondary Hashing? 0.25 < λ < 0.5
•  Chaining? 3.0 < λ < 10

DELETION
•  How to delete from a hash table?

DELETION
•  How to delete from a hash table?

•  Chaining: just remove the object from the
underlying data structure

DELETION
•  How to delete from a hash table?

•  Chaining: just remove the object from the
underlying data structure

•  Probing:

DELETION
•  How to delete from a hash table?

•  Chaining: just remove the object from the
underlying data structure

•  Probing: Must be able to follow the path in order
to find elements that have been added later

DELETION
•  How to delete from a hash table?

•  Chaining: just remove the object from the
underlying data structure

•  Probing: Must be able to follow the path in order
to find elements that have been added later

•  Need to mark as deleted, but not treat as
completely empty

LAZY DELETION
•  Common strategy in difficult-to-delete

data structures

LAZY DELETION
•  Common strategy in difficult-to-delete

data structures
•  When you delete, mark the element as deleted,

but maintain the data structure as-is

LAZY DELETION
•  Common strategy in difficult-to-delete

data structures
•  When you delete, mark the element as deleted,

but maintain the data structure as-is
•  Works well for AVL as well

LAZY DELETION
•  Common strategy in difficult-to-delete

data structures
•  When you delete, mark the element as deleted,

but maintain the data structure as-is
•  Works well for AVL as well
•  Can insert values into place if reinserted, just

cannot return the associated value on a call to
find

LAZY DELETION
•  Common strategy in difficult-to-delete

data structures
•  When you delete, mark the element as deleted,

but maintain the data structure as-is
•  Works well for AVL as well
•  Can insert values into place if reinserted, just

cannot return the associated value on a call to
find

•  Necessary for Probing (aka Open Addressing)
collision methods

CHAINING
•  What about chaining? What is a good

data structure to use?

CHAINING
•  What about chaining? What is a good

data structure to use?
•  Many implement with a simple linked list

CHAINING
•  What about chaining? What is a good

data structure to use?
•  Many implement with a simple linked list
•  If the load factor is λ, what is the expected

number of elements in a single bin?

CHAINING
•  What about chaining? What is a good

data structure to use?
•  Many implement with a simple linked list
•  If the load factor is λ, what is the expected

number of elements in a single bin? λ

CHAINING
•  What about chaining? What is a good

data structure to use?
•  Many implement with a simple linked list
•  If the load factor is λ, what is the expected

number of elements in a single bin? λ
•  However, the expected maximum actually grows

(roughly) logarithmically with table length

CHAINING
•  What about chaining? What is a good

data structure to use?
•  Many implement with a simple linked list
•  If the load factor is λ, what is the expected

number of elements in a single bin? λ
•  However, the expected maximum actually grows

(roughly) logarithmically with table length

CHAINING
•  What about chaining? What is a good

data structure to use?
•  Many implement with a simple linked list
•  If the load factor is λ, what is the expected

number of elements in a single bin? λ
•  However, the expected maximum actually grows

(roughly) logarithmically with table length
•  The more elements we add, the higher chance

that there is one bad bin

CHAINING
•  Solutions

•  Can perform resize when any bin reaches a
certain size

CHAINING
•  Solutions

•  Can perform resize when any bin reaches a
certain size

•  Overallocates memory, if unlucky

CHAINING
•  Solutions

•  Can perform resize when any bin reaches a
certain size

•  Overallocates memory, if unlucky
•  Preserves O(1) guarantee, however

CHAINING
•  Solutions

•  Can perform resize when any bin reaches a
certain size

•  Overallocates memory, if unlucky
•  Preserves O(1) guarantee, however
•  Downsizing is also difficult to calculate

CHAINING
•  Solutions

•  Can perform resize when any bin reaches a
certain size

•  Overallocates memory, if unlucky
•  Preserves O(1) guarantee, however
•  Downsizing is also difficult to calculate

•  Make the underlying data structure more efficient

CHAINING
•  Solutions

•  Can perform resize when any bin reaches a
certain size

•  Overallocates memory, if unlucky
•  Preserves O(1) guarantee, however
•  Downsizing is also difficult to calculate

•  Make the underlying data structure more efficient
•  AVL is surprisingly common

CHAINING
•  Solutions

•  Can perform resize when any bin reaches a
certain size

•  Overallocates memory, if unlucky
•  Preserves O(1) guarantee, however
•  Downsizing is also difficult to calculate

•  Make the underlying data structure more efficient
•  AVL is surprisingly common
•  Hash table is also common

CHAINING
•  Hash of hashes

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N
•  How big would our table need to be for open

addressing?

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N
•  How big would our table need to be for open

addressing? N2

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N
•  How big would our table need to be for open

addressing? N2

•  What if we use a hashtable of hashtables

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N
•  How big would our table need to be for open

addressing? N2

•  What if we use a hashtable of hashtables
•  Let the first table size be N

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N
•  How big would our table need to be for open

addressing? N2

•  What if we use a hashtable of hashtables
•  Let the first table size be N
•  Second tables are dynamically allocated (they

will grow if they’re a heavy-hitter)

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N
•  How big would our table need to be for open

addressing? N2

•  What if we use a hashtable of hashtables
•  Let the first table size be N
•  Second tables are dynamically allocated (they

will grow if they’re a heavy-hitter)
•  If we still want 1/N collision probability, how

large is the table?

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N
•  How big would our table need to be for open

addressing? N2

•  What if we use a hashtable of hashtables
•  Let the first table size be N
•  Second tables are dynamically allocated (they

will grow if they’re a heavy-hitter)
•  If we still want 1/N collision probability, how

large is the table? N2 but N is almost always a
constant

CHAINING
•  Hash of hashes

•  Suppose we want a collision with probability 1/N
•  How big would our table need to be for open

addressing? N2

•  What if we use a hashtable of hashtables
•  Let the first table size be N
•  Second tables are dynamically allocated (they

will grow if they’re a heavy-hitter)
•  If we still want 1/N collision probability, how

large is the table? N2 but N is almost always a
constant

•  Some constant number have log n memory, but
this is O(n) memory usage overall!

HASHTABLE IMPLEMENTATION
•  Hashtables implement dictionaries

HASHTABLE IMPLEMENTATION
•  Hashtables implement dictionaries

•  <Key, Value> pairs

HASHTABLE IMPLEMENTATION
•  Hashtables implement dictionaries

•  <Key, Value> pairs
•  Don’t allow duplicate keys

HASHTABLE IMPLEMENTATION
•  Hashtables implement dictionaries

•  <Key, Value> pairs
•  Don’t allow duplicate keys
•  Keys with the same “value” must have the same hash

code

HASHTABLE IMPLEMENTATION
•  Hashtables implement dictionaries

•  <Key, Value> pairs
•  Don’t allow duplicate keys
•  Keys with the same “value” must have the same hash

code
•  For open addressing, stored either as an array of

<key,value> class objects, or as two parallel arrays,
one of keys and the other of values

HASHTABLE IMPLEMENTATION
•  Resizing

HASHTABLE IMPLEMENTATION
•  Resizing

•  Only get O(1) operations if the table is well-
maintained

HASHTABLE IMPLEMENTATION
•  Resizing

•  Only get O(1) operations if the table is well-
maintained

•  Easy to get good runtimes, if you don’t consider
memory

HASHTABLE IMPLEMENTATION
•  Resizing

•  Only get O(1) operations if the table is well-
maintained

•  Easy to get good runtimes, if you don’t consider
memory

•  bigO analysis can apply to memory consumption in
the same way it applies to clock cycles

HASHTABLE IMPLEMENTATION
•  Resizing

•  Only get O(1) operations if the table is well-
maintained

•  Easy to get good runtimes, if you don’t consider
memory

•  bigO analysis can apply to memory consumption in
the same way it applies to clock cycles

•  Resizing takes O(n) extra memory, because you
need to maintain the original hash table while you
build the second.

HASHTABLE IMPLEMENTATION
•  Resizing

•  Iterate through the table (these are not in any
meaningful order)

HASHTABLE IMPLEMENTATION
•  Resizing

•  Iterate through the table (these are not in any
meaningful order)

•  Insert each of the <k,v> pairs into the new hashtable
(which may be larger or smaller)

•  Move pointers to new hash table

HASHTABLE IMPLEMENTATION
•  Assorted things

HASHTABLE IMPLEMENTATION
•  Assorted things

•  Prime table sizes
•  Usually keep an array of all the primes that roughly double

in size precalculated

HASHTABLE IMPLEMENTATION
•  Assorted things

•  Prime table sizes
•  Usually keep an array of all the primes that roughly double

in size precalculated
•  Finding primes is actually very computationally difficult,

HASHTABLE IMPLEMENTATION
•  Assorted things

•  Prime table sizes
•  Usually keep an array of all the primes that roughly double

in size precalculated
•  Finding primes is actually very computationally difficult,
•  If n is large enough, finding the new prime can be the most

consuming portion of the resize

HASHTABLE IMPLEMENTATION
•  Assorted things

•  Prime table sizes
•  Usually keep an array of all the primes that roughly double

in size precalculated
•  Finding primes is actually very computationally difficult,
•  If n is large enough, finding the new prime can be the most

consuming portion of the resize
•  If a.equals(b) then a.hashcode() == b.hashcode()

HASHTABLE IMPLEMENTATION
•  Assorted things

•  Prime table sizes
•  Usually keep an array of all the primes that roughly double

in size precalculated
•  Finding primes is actually very computationally difficult,
•  If n is large enough, finding the new prime can be the most

consuming portion of the resize
•  If a.equals(b) then a.hashcode() == b.hashcode()
•  Hardware constraints, even if you have lots of memory,

over allocating fails to take advantage of spatial locality
and can be problematic

HASHTABLE TAKEAWAYS
•  Provide constant time find(k), insert(k,v) and delete(k)

provided the structure is well maintained!

HASHTABLE TAKEAWAYS
•  Provide constant time find(k), insert(k,v) and delete(k)

provided the structure is well maintained

•  Load factor is the primary determinant of runtime

HASHTABLE TAKEAWAYS
•  Provide constant time find(k), insert(k,v) and delete(k)

provided the structure is well maintained

•  Load factor is the primary determinant of runtime

•  Two approaches, probing v. chaining

HASHTABLE TAKEAWAYS
•  Provide constant time find(k), insert(k,v) and delete(k)

provided the structure is well maintained

•  Load factor is the primary determinant of runtime

•  Two approaches, probing v. chaining

•  Primary and Secondary clustering

HASHTABLE TAKEAWAYS
•  Provide constant time find(k), insert(k,v) and delete(k)

provided the structure is well maintained

•  Load factor is the primary determinant of runtime

•  Two approaches, probing v. chaining

•  Primary and Secondary clustering

•  Which chaining data structure do you use?

HASHTABLE TAKEAWAYS
•  Provide constant time find(k), insert(k,v) and delete(k)

provided the structure is well maintained

•  Load factor is the primary determinant of runtime

•  Two approaches, probing v. chaining

•  Primary and Secondary clustering

•  Which chaining data structure do you use?

•  Easy interview question answer, just be ready to explain
how your data structure reacts to memory constraints

EXAM FRIDAY
•  Topics

•  Definitions
•  Stacks and Queues
•  Heaps
•  Runtime Analysis
•  Dictionaries
•  BSTs
•  B-Trees

•  AVL Trees
•  Hash Tables
•  Tries

DEFINITIONS
•  Important terms

DEFINITIONS
•  Important terms

•  Abstract Data Type

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

•  Supports functions: insert, find, delete
•  Has expected behavior

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

•  Supports functions: insert, find, delete
•  Has expected behavior

•  Data Structure

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

•  Supports functions: insert, find, delete
•  Has expected behavior

•  Data Structure
•  Language independent structure which

implements an ADT

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

•  Supports functions: insert, find, delete
•  Has expected behavior

•  Data Structure
•  Language independent structure which

implements an ADT
•  Example: AVL tree

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

•  Supports functions: insert, find, delete
•  Has expected behavior

•  Data Structure
•  Language independent structure which

implements an ADT
•  Example: AVL tree
•  Can be analyzed asymptotically

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions
•  Language specific

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions
•  Language specific

•  Example

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions
•  Language specific

•  Example
•  The Queue ADT supports enqueue, dequeue

and front.

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions
•  Language specific

•  Example
•  The Queue ADT supports enqueue, dequeue

and front.
•  Arrays and Linked Lists are examples of the

data structures

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions
•  Language specific

•  Example
•  The Queue ADT supports enqueue, dequeue

and front.
•  Arrays and Linked Lists are examples of the

data structures
•  Implementation: front and back pointers

STACKS AND QUEUES
•  Our first two ADTs

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:
•  Supports: push(), pop(), top()

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:
•  Supports: push(), pop(), top()
•  LIFO order

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:
•  Supports: push(), pop(), top()
•  LIFO order

•  Queue:

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:
•  Supports: push(), pop(), top()
•  LIFO order

•  Queue:
•  Supports: enqueue(), dequeue(), front()

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:
•  Supports: push(), pop(), top()
•  LIFO order

•  Queue:
•  Supports: enqueue(), dequeue(), front()
•  FIFO order

STACKS AND QUEUES
•  Data structure choices

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

•  Memory usage

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

•  Memory usage
•  Ease of implementation

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

•  Memory usage
•  Ease of implementation
•  Resizing time

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

•  Memory usage
•  Ease of implementation
•  Resizing time

•  Runtimes:

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

•  Memory usage
•  Ease of implementation
•  Resizing time

•  Runtimes:
•  O(1) for all functions

HEAPS
•  Priority Queue ADT

HEAPS
•  Priority Queue ADT

•  Supports: insert(), findMin(), deleteMin(),
changePriority()

HEAPS
•  Priority Queue ADT

•  Supports: insert(), findMin(), deleteMin(),
changePriority()

•  Data is stored in priority, value pairs

HEAPS
•  Priority Queue ADT

•  Supports: insert(), findMin(), deleteMin(),
changePriority()

•  Data is stored in priority, value pairs
•  In this class, we use the min-heap, where a lower

value means it should dequeue first

HEAPS
•  Data Structure

•  Heap

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array
•  Find parents/children arithmetically

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array
•  Find parents/children arithmetically

•  Runtimes

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array
•  Find parents/children arithmetically

•  Runtimes
•  Insert: O(log n), findMin: O(1), deleteMin O(log n)
•  ChangePriority: O(log n)

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array
•  Find parents/children arithmetically

•  Runtimes
•  Insert: O(log n), findMin: O(1), deleteMin O(log n)
•  ChangePriority: O(log n)
•  buildHeap, O(n)

RUNTIME ANALYSIS
•  Counting the number of operations

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments
•  For loops and while statements

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments
•  For loops and while statements

•  Count the number of times relevant code is executed

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments
•  For loops and while statements

•  Count the number of times relevant code is executed
•  Important summations

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments
•  For loops and while statements

•  Count the number of times relevant code is executed
•  Important summations

•  Sum of all numbers from 1 to n

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments
•  For loops and while statements

•  Count the number of times relevant code is executed
•  Important summations

•  Sum of all numbers from 1 to n
•  Sum of the powers of two

RUNTIME ANALYSIS
•  Asymptotic Analysis

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case
•  Usually we discuss worst-case complexity

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case
•  Usually we discuss worst-case complexity
•  If we increase the input size, how does the

computation time change

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case
•  Usually we discuss worst-case complexity
•  If we increase the input size, how does the

computation time change
•  BigO notation

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case
•  Usually we discuss worst-case complexity
•  If we increase the input size, how does the

computation time change
•  BigO notation

•  Upper bound for a given function

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case
•  Usually we discuss worst-case complexity
•  If we increase the input size, how does the

computation time change
•  BigO notation

•  Upper bound for a given function
•  f(n) = O(g(n) if there exists a c and n0 for which

f(n) < c*g(n) for all n > n0

RUNTIME ANALYSIS
•  Recurrences

RUNTIME ANALYSIS
•  Recurrences

•  Way in which we approach recursive functions

RUNTIME ANALYSIS
•  Recurrences

•  Way in which we approach recursive functions
•  Separate into recursive and non-recursive

RUNTIME ANALYSIS
•  Recurrences

•  Way in which we approach recursive functions
•  Separate into recursive and non-recursive
•  Calculate the runtimes for non-recursive and base

cases

RUNTIME ANALYSIS
•  Recurrences

•  Way in which we approach recursive functions
•  Separate into recursive and non-recursive
•  Calculate the runtimes for non-recursive and base

cases
•  Produce the recurrence

RUNTIME ANALYSIS
•  Recurrences

•  Way in which we approach recursive functions
•  Separate into recursive and non-recursive
•  Calculate the runtimes for non-recursive and base

cases
•  Produce the recurrence
•  Solve the recurrence by rolling out, using a graphical

tree or using the master theorem

RUNTIME ANALYSIS
•  Recurrences

•  Way in which we approach recursive functions
•  Separate into recursive and non-recursive
•  Calculate the runtimes for non-recursive and base

cases
•  Produce the recurrence
•  Solve the recurrence by rolling out, using a graphical

tree or using the master theorem
•  Provide the bigO asymptotic bounds

RUNTIME ANALYSIS
•  Amortized analysis

RUNTIME ANALYSIS
•  Amortized analysis

•  When computations come at predictable times but are
very expensive

RUNTIME ANALYSIS
•  Amortized analysis

•  When computations come at predictable times but are
very expensive

•  The amortized runtime is the time a method takes to
run n consecutive operations divided by n.

RUNTIME ANALYSIS
•  Amortized analysis

•  When computations come at predictable times but are
very expensive

•  The amortized runtime is the time a method takes to
run n consecutive operations divided by n.

•  This is different than best-case/worst-case

RUNTIME ANALYSIS
•  Amortized analysis

•  When computations come at predictable times but are
very expensive

•  The amortized runtime is the time a method takes to
run n consecutive operations divided by n.

•  This is different than best-case/worst-case
•  Array resizing was the prominent example

RUNTIME ANALYSIS
•  Basic ideas

•  O(1): Input size has no effect on runtime

RUNTIME ANALYSIS
•  Basic ideas

•  O(1): Input size has no effect on runtime
•  O(log n): doubling the input increases the runtime by

some constant amount

RUNTIME ANALYSIS
•  Basic ideas

•  O(1): Input size has no effect on runtime
•  O(log n): doubling the input increases the runtime by

some constant amount
•  O(n): linear time, each additional input increases

execution time by a constant amount

RUNTIME ANALYSIS
•  Basic ideas

•  O(1): Input size has no effect on runtime
•  O(log n): doubling the input increases the runtime by

some constant amount
•  O(n): linear time, each additional input increases

execution time by a constant amount
•  O(n2): doubling the input increases the runtime by a

factor of 4.

RUNTIME ANALYSIS
•  Basic ideas

•  O(1): Input size has no effect on runtime
•  O(log n): doubling the input increases the runtime by

some constant amount
•  O(n): linear time, each additional input increases

execution time by a constant amount
•  O(n2): doubling the input increases the runtime by a

factor of 4.
•  O(2n): exponential, increasing the input by one

doublies the runtime

DICTIONARIES
•  ADT

DICTIONARIES
•  ADT

•  Supports the following functions

DICTIONARIES
•  ADT

•  Supports the following functions
•  Insert(key k, value v)

DICTIONARIES
•  ADT

•  Supports the following functions
•  Insert(key k, value v)
•  find(key k)
•  delete(key k)

DICTIONARIES
•  ADT

•  Supports the following functions
•  Insert(key k, value v)
•  find(key k)
•  delete(key k)

•  Data is stored in key, value pairs

DICTIONARIES
•  ADT

•  Supports the following functions
•  Insert(key k, value v)
•  find(key k)
•  delete(key k)

•  Data is stored in key, value pairs
•  In this course, duplicate keys are not allowed

DICTIONARIES
•  ADT

•  Supports the following functions
•  Insert(key k, value v)
•  find(key k)
•  delete(key k)

•  Data is stored in key, value pairs
•  In this course, duplicate keys are not allowed
•  Most data structures can implement a dictionary

BINARY SEARCH TREES
•  Binary trees

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children
•  Maintains search property

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children
•  Maintains search property

•  All values in the left subtree must be less than the parent
•  All values in the right subtree must be greater than the

parent

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children
•  Maintains search property

•  All values in the left subtree must be less than the parent
•  All values in the right subtree must be greater than the

parent
•  With each increase in height, the number of nodes in a tree

roughly doubles

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children
•  Maintains search property

•  All values in the left subtree must be less than the parent
•  All values in the right subtree must be greater than the

parent
•  With each increase in height, the number of nodes in a tree

roughly doubles
•  A completely full tree has 2h-1 nodes

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children
•  Maintains search property

•  All values in the left subtree must be less than the parent
•  All values in the right subtree must be greater than the

parent
•  With each increase in height, the number of nodes in a tree

roughly doubles
•  A completely full tree has 2h-1 nodes
•  Roughly half of a binary search tree are nodes

AVL TREES
•  Specific type of binary search tree

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search
•  Nodes in AVL trees have two extra fields, height and

balance

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search
•  Nodes in AVL trees have two extra fields, height and

balance
•  Balance = | height(left) – height(right) |

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search
•  Nodes in AVL trees have two extra fields, height and

balance
•  Balance = | height(left) – height(right) |
•  Balance for each node must be less than or equal to 1

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search
•  Nodes in AVL trees have two extra fields, height and

balance
•  Balance = | height(left) – height(right) |
•  Balance for each node must be less than or equal to 1
•  Trees with this condition still have O(log n) height

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search
•  Nodes in AVL trees have two extra fields, height and

balance
•  Balance = | height(left) – height(right) |
•  Balance for each node must be less than or equal to 1
•  Trees with this condition still have O(log n) height
•  No covering delete in this course

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search
•  Nodes in AVL trees have two extra fields, height and

balance
•  Balance = | height(left) – height(right) |
•  Balance for each node must be less than or equal to 1
•  Trees with this condition still have O(log n) height
•  No covering delete in this course
•  Find: O(log n): Insert O(log n)

AVL ROTATIONS
•  AVL Rotations occur when an insertion makes a node

out of balance

AVL ROTATIONS
•  AVL Rotations occur when an insertion makes a node

out of balance
•  Relative to the node that is unbalanced, there are four

rotations depending on which grandchild received the new
node.

AVL ROTATIONS
•  AVL Rotations occur when an insertion makes a node

out of balance
•  Relative to the node that is unbalanced, there are four

rotations depending on which grandchild received the new
node.

•  Left-left and right right rotations involve the child of the
affected node being rotated up into position

AVL ROTATIONS
•  AVL Rotations occur when an insertion makes a node

out of balance
•  Relative to the node that is unbalanced, there are four

rotations depending on which grandchild received the new
node.

•  Left-left and right right rotations involve the child of the
affected node being rotated up into position

•  Left-right and right-left rotations involve the grandchild being
rotated up into position. The grandparent and parent
become the two children

AVL ROTATIONS
•  AVL Rotations occur when an insertion makes a node

out of balance
•  Relative to the node that is unbalanced, there are four

rotations depending on which grandchild received the new
node.

•  Left-left and right right rotations involve the child of the
affected node being rotated up into position

•  Left-right and right-left rotations involve the grandchild being
rotated up into position. The grandparent and parent
become the two children

•  It is important that these rotations preserve BST property

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses
•  Memory is broken up into pages

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses
•  Memory is broken up into pages
•  Some pages are on disk, others are in cache

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses
•  Memory is broken up into pages
•  Some pages are on disk, others are in cache
•  Need a data structure to minimize disk accesses

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses
•  Memory is broken up into pages
•  Some pages are on disk, others are in cache
•  Need a data structure to minimize disk accesses

•  Data structure

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses
•  Memory is broken up into pages
•  Some pages are on disk, others are in cache
•  Need a data structure to minimize disk accesses

•  Data structure

•  Two types of nodes, signposts and leaves

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses
•  Memory is broken up into pages
•  Some pages are on disk, others are in cache
•  Need a data structure to minimize disk accesses

•  Data structure

•  Two types of nodes, signposts and leaves
•  Signposts have between M/2 and M children, where M

makes the signpost object as large as possible while still
fitting in one page

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses
•  Memory is broken up into pages
•  Some pages are on disk, others are in cache
•  Need a data structure to minimize disk accesses

•  Data structure

•  Two types of nodes, signposts and leaves
•  Signposts have between M/2 and M children, where M

makes the signpost object as large as possible while still
fitting in one page

•  Leaves have between L/2 and L pieces of sorted data and a
pointer to the next leaf

B-PLUS TREES
•  Memory is not the equal access object that traditional

theory discusses
•  Memory is broken up into pages
•  Some pages are on disk, others are in cache
•  Need a data structure to minimize disk accesses

•  Data structure

•  Two types of nodes, signposts and leaves
•  Signposts have between M/2 and M children, where M

makes the signpost object as large as possible while still
fitting in one page

•  Leaves have between L/2 and L pieces of sorted data and a
pointer to the next leaf

•  Root is exempt from minimums

B-PLUS TREES
•  Inserting

B-PLUS TREES
•  Inserting

•  Add in sorted order

B-PLUS TREES
•  Inserting

•  Add in sorted order
•  If you fail, break the leaf into two

B-PLUS TREES
•  Inserting

•  Add in sorted order
•  If you fail, break the leaf into two
•  If the signpost cannot fit another node, recursively try to add

nodes back up to the root until a signpost has room

B-PLUS TREES
•  Inserting

•  Add in sorted order
•  If you fail, break the leaf into two
•  If the signpost cannot fit another node, recursively try to add

nodes back up to the root until a signpost has room
•  Find

B-PLUS TREES
•  Inserting

•  Add in sorted order
•  If you fail, break the leaf into two
•  If the signpost cannot fit another node, recursively try to add

nodes back up to the root until a signpost has room
•  Find

•  Signposts indicate where key,value pairs are by markers in
their node, a child is between two values

B-PLUS TREES
•  Inserting

•  Add in sorted order
•  If you fail, break the leaf into two
•  If the signpost cannot fit another node, recursively try to add

nodes back up to the root until a signpost has room
•  Find

•  Signposts indicate where key,value pairs are by markers in
their node, a child is between two values

•  Traverse down the tree to the bottom

B-PLUS TREES
•  Delete

B-PLUS TREES
•  Delete

•  If a deletion causes a leaf to go less than L/2 in size

B-PLUS TREES
•  Delete

•  If a deletion causes a leaf to go less than L/2 in size
•  Try to adopt if we can (changing signposts if necessary)

B-PLUS TREES
•  Delete

•  If a deletion causes a leaf to go less than L/2 in size
•  Try to adopt if we can (changing signposts if necessary)
•  If not, merge leaves together

B-PLUS TREES
•  Delete

•  If a deletion causes a leaf to go less than L/2 in size
•  Try to adopt if we can (changing signposts if necessary)
•  If not, merge leaves together
•  Recursively merge signposts together as necessary in the

path back to the root

B-PLUS TREES
•  Delete

•  If a deletion causes a leaf to go less than L/2 in size
•  Try to adopt if we can (changing signposts if necessary)
•  If not, merge leaves together
•  Recursively merge signposts together as necessary in the

path back to the root
•  Gives us the most use out of a single disk access

B-PLUS TREES
•  Delete

•  If a deletion causes a leaf to go less than L/2 in size
•  Try to adopt if we can (changing signposts if necessary)
•  If not, merge leaves together
•  Recursively merge signposts together as necessary in the

path back to the root
•  Gives us the most use out of a single disk access

•  Commonly used for databases because it allows good disk
storage and easy retrieval of keys in a range

HASH TABLES
•  A large data set M with a smaller set that should be

saved, D

HASH TABLES
•  A large data set M with a smaller set that should be

saved, D

•  A hash function maps M onto D

HASH TABLES
•  A large data set M with a smaller set that should be

saved, D

•  A hash function maps M onto D
•  It should run in O(1) time

HASH TABLES
•  A large data set M with a smaller set that should be

saved, D

•  A hash function maps M onto D
•  It should run in O(1) time
•  It should distribute into all of the available spots evenly

•  Hashtables provide O(1) runtime IF

HASH TABLES
•  A large data set M with a smaller set that should be

saved, D

•  A hash function maps M onto D
•  It should run in O(1) time
•  It should distribute into all of the available spots evenly

•  Hashtables provide O(1) runtime IF
•  Collisions are not a problem
•  Decrease the chance of collisions by increasing the

amount of memory

HASH TABLES
•  A large data set M with a smaller set that should be

saved, D

•  A hash function maps M onto D
•  It should run in O(1) time
•  It should distribute into all of the available spots evenly

•  Hashtables provide O(1) runtime IF
•  Collisions are not a problem
•  Decrease the chance of collisions by increasing the

amount of memory
•  Resizing is costly

DESIGN DECISION PROBLEM
•  Think about runtime

DESIGN DECISION PROBLEM
•  Think about runtime
•  Memory constraints

DESIGN DECISION PROBLEM
•  Think about runtime
•  Memory constraints
•  Function prioritizing

DESIGN DECISION PROBLEM
•  Think about runtime
•  Memory constraints
•  Function prioritizing
•  Experimental considerations

NEXT CLASS
•  Exam!

