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TODAY’S LECTURE 
•  Minimum Spanning Trees 

•  Prim’s Algorithm (vertex based solution) 
•  Kruskal’s Algorithm (edge based solution) 



PROBLEM STATEMENT 
Given a connected  undirected graph G=(V,E), find a minimal 
subset of edges such that G is still connected 

•  A graph G2=(V,E2) such that G2 is connected and removing any 
edge from E2 makes G2 disconnected 



OBSERVATIONS 
1.  Problem not defined if original graph not connected.  

Therefore, we know |E| >= |V|-1 
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OBSERVATIONS 
1.  Problem not defined if original graph not connected.  

Therefore, we know |E| >= |V|-1 
 
2.  Any solution to this problem is a tree 

•  Recall a tree does not need a root; just means acyclic 
•  For any cycle, could remove an edge and still be 

connected 
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OBSERVATIONS 
1.  Problem not defined if original graph not connected.  

Therefore, we know |E| >= |V|-1 
 
2.  Any solution to this problem is a tree 

•  Recall a tree does not need a root; just means acyclic 
•  For any cycle, could remove an edge and still be 

connected 
3.  A tree with |V| nodes has |V|-1 edges 

•  So every solution to the spanning tree problem has |V|-1 
edges 
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MOTIVATION 
A spanning tree connects all the nodes with as few edges as possible 
 

 

In most compelling uses, we have a weighted  undirected graph and 
we want a tree of least total cost  
Example: Electrical wiring for a house or clock wires on a chip 

Example: A road network if you cared about asphalt cost rather than 
travel time 
 

This is the minimum spanning tree problem 

•  Will do that next, after intuition from the simpler case 



TWO APPROACHES 
Different algorithmic approaches to the spanning-tree 
problem: 
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TWO APPROACHES 
Different algorithmic approaches to the spanning-tree 
problem: 
 
1.  Do a graph traversal (e.g., depth-first search, but any 

traversal will do), keeping track of edges that form a tree 
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TWO APPROACHES 
Different algorithmic approaches to the spanning-tree 
problem: 
 
1.  Do a graph traversal (e.g., depth-first search, but any 

traversal will do), keeping track of edges that form a tree 

2.  Iterate through edges; add to output any edge that does 
not create a cycle 
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SPANNING TREE VIA DFS 

13 

spanning_tree(Graph G) { 
  for each node v:  
  v.marked = false 
 dfs(someRandomStartNode) 

} 
dfs(Vertex a) {  // recursive DFS 
  a.marked = true 
  for each b adjacent to a: 
   if(!b.marked) { 

      add(a,b) to output 
      dfs(b) 
  } 
} 
   

Correctness: DFS reaches each node in connected graph.   
We add one edge to connect it to the already visited nodes.   
Order affects result, not correctness.     Runtime: O(|E|) 



EXAMPLE 
dfs(1) 
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Output: 



EXAMPLE 
dfs(1) 
 
Pending 

Callstack: 

dfs(2) 

dfs(5) 

dfs(6) 

1 
2 
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6 

7 

Output: 



EXAMPLE 
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1 
2 

3 

4 

5 

6 

7 

Output:  (1,2) 

dfs(2) 
 
 
Pending 
Callstack: 

dfs(7) 
dfs(3) 
dfs(5) 
dfs(6) 



EXAMPLE 
dfs(7) 
 
Pending 
Callstack: 

dfs(5) 
dfs(4) 
dfs(3) 
dfs(5) 
dfs(6) 

 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7) 



EXAMPLE 
dfs(5) 
 
Pending 
Callstack: 

dfs(4) 
dfs(6) 
dfs(4) 
dfs(3) 
dfs(6) 

 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5) 



EXAMPLE 
dfs(4) 
 
Pending 

Callstack: 

dfs(3) 

dfs(6) 

dfs(3) 
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1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4) 



EXAMPLE 
dfs(3) 
 
Pending 

Callstack: 

dfs(6) 

 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4), (4,3) 



EXAMPLE 
dfs(6) 
 
Pending 

Callstack: 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



EXAMPLE 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



SECOND APPROACH 
Iterate through edges; output any edge that does not create a 
cycle 
 
Correctness (hand-wavy): 

•  Goal is to build an acyclic connected graph 
•  When we add an edge, it adds a vertex to the tree  
•  The graph is connected, so we reach all vertices 

Efficiency: 

•  Depends on how quickly you can detect cycles 
•  Reconsider after the example 

 



EXAMPLE 
Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), 
(4,5), (4,7) 

1 
2 

3 

4 

5 

6 

7 

Output: 



Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) 

EXAMPLE 



Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4) 

EXAMPLE 



Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6),  

EXAMPLE 



Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7)  

EXAMPLE 



Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  

EXAMPLE 



Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  

EXAMPLE 



Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  

EXAMPLE 



Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)  

Can stop once we 
have |V|-1 edges 

EXAMPLE 



CYCLE DETECTION 
To decide if an edge could form a cycle is O(|V|) because we 
may need to traverse all edges already in the output 
 
So overall algorithm would be O(|V||E|) 

 

But there is a faster way: union-find! 

•  Data structure which stores connected sub-graphs 
•  As we add more edges to the spanning tree, those sub-

graphs are joined 



DISJOINT SETS AND 
UNION FIND 
What are sets and disjoint sets 

 
The union-find ADT for disjoint sets 

 

Basic implementation with "up trees" 

 

Optimizations that make the implementation much faster 
 

34 



TERMINOLOGY 

Intersection ∩ Union ∪ 

Empty set: ∅ 

Set S containing e1, e2 and e3: {e1, e2, el3} 
e1 is an element of S: e1 ∈ S 

Notation for elements in a set: 



DISJOINT SETS 
A set is a collection of elements (no-repeats)  
Every set contains the empty set by default 
Two sets are disjoint if they have no elements in common 

•  S1 ∩ S2 = ∅ 

Examples:  

•  {a, e, c} and {d, b}      
•   {x, y, z} and {t, u, x}    

36 

Disjoint 
Not disjoint 



PARTITIONS 
A partition P of a set S is a set of sets {S1,S2,…,Sn} such that 
every element of S is in exactly one Si 

Put another way: 
•  S1 ∪ S2 ∪ . . . ∪ Sk = S 
•  For all i and j, i ≠ j implies Si ∩ Sj = ∅  (sets are disjoint with 

each other) 

Example:  Let S be {a,b,c,d,e} 
•  {a}, {d,e}, {b,c} 
•  {a,b,c}, ∅, {d}, {e} 
•  {a,b,c,d,e} 
•  {a,b,d}, {c,d,e} 
•  {a,b}, {e,c} 

Partition 
Partition 
Partition 

Not a partition, not disjoint, both sets have d 
Not a partition of S (doesn’t have d) 



UNION FIND ADT: 
OPERATIONS 
Given an unchanging set S, create an initial partition of a set 

•  Typically each item in its own subset: {a}, {b}, {c}, … 
•  Give each subset a "name" by choosing a representative 

element 

Operation find takes an element of S and returns the 
representative element of the subset it is in 
 
Operation union takes two subsets and (permanently) makes 
one larger subset 

•  A different partition with one fewer set 
•  Affects result of subsequent find operations 
•  Choice of representative element up to implementation 

 



EXAMPLE 
Let S = {1,2,3,4,5,6,7,8,9} 
 

Let initial partition be (will highlight representative elements red) 
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9} 

union(2,5): 
{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9} 

find(4) = 4, find(2) = 2, find(5) = 2 
union(4,6), union(2,7) 

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9} 
find(4) = 6, find(2) = 2, find(5) = 2 
union(2,6) 

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9} 
 
 

 
 
 
 



NO OTHER 
OPERATIONS 
All that can "happen" is sets get unioned 

•  No "un-union" or "create new set" or … 

As always: trade-offs – implementations are different 

•  ideas?  How do we maintain “representative” of a subset? 
 

Surprisingly useful ADT, but not as common as dictionaries, 
priority queues / heaps, AVL trees or hashing 



EXAMPLE APPLICATION: 
MAZE-BUILDING 

Build a random maze by erasing edges 

Criteria: 
•  Possible to get from anywhere to anywhere 
•  No loops possible without backtracking 

•  After a "bad turn" have to "undo" 



MAZE BUILDING 
Pick start edge and end edge 
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Start 

End 



REPEATEDLY PICK RANDOM 
EDGES TO DELETE 
One approach: just keep deleting random edges until you 
can get from start to finish 
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Start 

End 



PROBLEMS WITH THIS 
APPROACH 
1.  How can you tell when there is a path from start 

to finish? 
•  We do not really have an algorithm yet (Graphs) 

2.  We have cycles, which a "good" maze avoids 
3.  We can’t get from anywhere to anywhere else 

Start 

End 



REVISED APPROACH 
Consider edges in random order 
 

But only delete them if they introduce no cycles (how? TBD) 
 

When done, will have one way to get from any place to any other place (assuming no 
backtracking) 
 
 
 
 
 
 
 
 

 

 

 

 

 

Notice the funny-looking tree in red 

45 

Start 

End 



CELLS AND EDGES 
Let’s number each cell 

•  36 total for 6 x 6 
An (internal) edge (x,y) is the line between cells x and y  

•  60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), … 

Start 

End 

1 2 3 4 5 6 
7 8 9 10 11 12 

13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
31 32 33 34 35 36 



THE TRICK 
Partition the cells into disjoint  sets: "are they connected" 

•  Initially every cell is in its own subset 
If an edge would connect two different subsets: 

•  then remove the edge and union the subsets 
•  else leave the edge because removing it makes a cycle 

Start 

End 

1 2 3 4 5 6 
7 8 9 10 11 12 

13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
31 32 33 34 35 36 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 



IMPLEMENTATION?  
How do you store a subset?   
How do you know what the “representative” is?  
How do you implement union? 

How do you pick a new “representative”? 

What is the cost of find?  Of union? Of create? 



IMPLEMENTATION 
Start with an initial partition of n subsets 

•  Often 1-element sets, e.g., {1}, {2}, {3}, …, {n} 

May have m find operations and up to n-1 union operations 
in any order 

•  After n-1 union operations, every find returns same 1 set 

If total for all these operations is O(m+n), then average over 
the runs is O(1)   

•  We will get very, very close to this 
•  O(1) worst-case is impossible for find and union 

•  Trivial for one or the other 



UP-TREE DATA 
STRUCTURE 
Tree with any number of children at each node 

•  References from children to parent (each child knows who it’s parent 
is) 

 

Start with forest (collection of trees) of 1-node trees 
 

 

Possible forest after several unions: 
•  Will use overall roots for the  

     representative element 

1 2 3 4 5 6 7 

1 

2 

3 

4 5 

6 

7 



FIND  
find(x): (backwards from the tree traversals we’ve been 
doing for find so far) 

•  Assume we have O(1) access to each node 
•  Start at x and follow parent pointers to root 
• Return the root 

 

 
1 

2 

3 

4 5 

6 

7 
find(6) = 7 



UNION 
union(x,y): 

• Find the roots of x and y 
•  if distinct trees, we merge, if the same tree, do 

nothing  
• Change root of one to have parent be the root of the 

other 
 

1 

2 

3 

4 5 

6 

7 
union(1,7) 



REPRESENTATION 
Important to remember from the operations: 

•  We assume O(1) access to each node 
•  Ideally, we want the traversal from leaf to root of each tree to 

be as short as possible (the find operation depends on this 
traversal) 

•  We don’t want to copy a bunch of nodes to a new tree on 
each union, we only want to modify one pointer (or a small 
constant number of them)  



SIMPLE IMPLEMENTATION 
If set elements are contiguous numbers (e.g., 1,2,…,n), use an 
array of length n called up 

•  Starting at index 1 on slides 
•  Put in array index of parent, with 0 (or -1, etc.) for a root 

Example: 
 
 
 
 
 
 
 
 
 
 
If set elements are not contiguous numbers, could have a separate dictionary hash map 
to map elements (keys) to numbers (values) 

1 

2 

3 

4 5 

6 

7 0 1 0 7 7 5 0 
1   2    3    4   5    6   7 

up 

1 2 3 4 5 6 7 0 0 0 0 0 0 0 
1   2    3    4   5    6   7 

up 



IMPLEMENT OPERATIONS 

Worst-case run-time for union? 
 

Worst-case run-time for find? 
 

Worst-case run-time for m finds and n-1 unions? 

 

 

 
 

// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 // y = find(y) 
 // x = find(x) 
 up[y] = x; 

} 
  



IMPLEMENT OPERATIONS 

Worst-case run-time for union?  
 

Worst-case run-time for find?  
 

Worst-case run-time for m finds and n-1 unions?   
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 // y = find(y) 
 // x = find(x) 
 up[y] = x; 

} 
  

  O(1)  
 

  O(n) 
 

O(m*n) 
 



THE BAD CASE TO 
AVOID 

1 2 3 n … 

1 

2 3 n 

union(2,1) 

1 

2 

3 n 

union(3,2) 

union(n,n-1) 

… 

… 

1 

2 

3 

n 

: 
. 

find(1)   n steps!! 



WEIGHTED UNION 
Weighted union: 

•  Always point the smaller (total # of nodes) tree to the root of 
the larger tree 
 

1 

2 

3 

4 5 

6 

7 

union(1,7) 

2 4 1 



WEIGHTED UNION 
Weighted union: 

•  Always point the smaller (total # of nodes) tree to the root of 
the larger tree 

•  What just happened to the height of the larger tree? 
 

1 

2 

3 

4 5 

6 

7 
union(1,7) 

6 1 



WEIGHTED UNION 
Weighted union: 

•  Like balancing on an AVL tree, we’re trying to keep the 
traversal from leaf to overall root short 
 

1 

2 

3 

4 5 

6 

7 union(1,7) 
6 1 



ARRAY 
IMPLEMENTATION 
Keep the weight (number of nodes in a second array).  Or 
have one array of objects with two fields.  Could keep track 
of height, but that’s harder.  Weight gives us an 
approximation. 

1 

2 

3 2 1 
0 
2 

1 0 
1 

7 7 5 0 
4 

1   2   3  4  5   6   7   
parent 
weight 

4 5 

6 

7 4 

1 

2 

3 1 7 
2 

1 0 
1 

7 7 5 0 
6 

parent 
weight 4 5 

6 

7 6 1   2   3   4  5  6   7   



NIFTY TRICK 
Actually we do not need a second array… 

•  Instead of storing 0 for a root, store negation of weight.  So parent 
value < 0 means a root. 

1 

2 

3 2 1 
-2 1 -1 7 7 5 -4 
1   2   3  4  5   6   7   

parent 
or weight 

4 5 

6 

7 4 

1 

2 

3 1 
4 5 

6 

7 6 
1   2   3   4  5  6   7   
7 1 -1 7 7 5 -6 parent 

or weight 



INTUITION: THE KEY 
IDEA 
Intuition behind the proof: No one child can have more than half 
the nodes 
 
 
 
 
 
So, as usual, if number of nodes is exponential in height, 
then height is logarithmic in number of nodes.  The height is 
log(N) where N is the number of nodes. 
 
So find is O(log n)  
 

63 

h 
T1 

T 



THE NEW WORST 
CASE FIND 

After n/2 + n/4 + …+ 1 Weighted Unions: 

Worst 
find Height grows by 1 a total of log n times 

log n 



PATH COMPRESSION 
Simple idea: As part of a find, change each 
encountered node’s parent to point directly to root 

•  Faster future finds for everything on the path (and their 
descendants) 

1 

2 

3 

4 5 

6 

7 

find(3) 

8 9 

10 

1 

2 3 4 5 6 

7 

8 9 10 

11 12 

11 12 



SPANNING TREES 
Given a connected  undirected graph G=(V,E), find a subset of 
edges such that G is still connected 

•  A graph G2=(V,E2) such that G2 is connected and removing any 
edge from E2 makes G2 disconnected 



MINIMAL SPANNING TREES 
•  How do we get a minimal spanning tree 

from a traversal? 



MINIMAL SPANNING TREES 
•  How do we get a minimal spanning tree 

from a traversal? 
•  What parts of a traversal can we change? 



MINIMAL SPANNING TREES 
•  How do we get a minimal spanning tree 

from a traversal? 
•  What parts of a traversal can we change? 
•  Select which vertex we visit next by which 

is closest to an old vertex 



PRIM’S ALGORITHM 
•  A traversal 



PRIM’S ALGORITHM 
•  A traversal 

•  Pick a start node 



PRIM’S ALGORITHM 
•  A traversal 

•  Pick a start node 
•  Keep track of all of the vertices you can 

reach 



PRIM’S ALGORITHM 
•  A traversal 

•  Pick a start node 
•  Keep track of all of the vertices you can 

reach 
•  Add the vertex that is closest (has the 

edge with smallest weight) to the current 
spanning tree. 



PRIM’S ALGORITHM 
•  A traversal 

•  Pick a start node 
•  Keep track of all of the vertices you can 

reach 
•  Add the vertex that is closest (has the 

edge with smallest weight) to the current 
spanning tree. 

•  Is this similar to something we’ve seen 
before? 



PRIM’S ALGORITHM 
•  Modify Dijkstra’s algorithm 



PRIM’S ALGORITHM 
•  Modify Dijkstra’s algorithm 

•  Instead of measuring the total length from 
start to the new vertex, now we only care 
about the edge from our current spanning 
tree to new nodes 



THE ALGORITHM 
1.  For each node v, set  v.cost = ∞ and v.known = false 
2.  Choose any node v  

a)  Mark v as known 
b)  For each edge (v,u) with weight w, set u.cost=w and u.prev=v 

3.  While there are unknown nodes in the graph 
a)  Select the unknown node v with lowest cost 
b)  Mark v as known and add (v, v.prev) to output 
c)  For each edge (v,u) with weight w, 

      if(w < u.cost) { 
          u.cost = w; 
     u.prev = v; 
      } 
  



EXAMPLE 

A B 

C 
D 

F 

E 

G 

∞ 
 

∞ 
 

∞ 
 

∞ 
 

∞ 
 

∞ 
 

2 

1 
2 

vertex known? cost prev 
A ∞ 
B ∞ 
C ∞ 
D ∞ 
E ∞ 
F ∞ 
G ∞ 

5 

1 
1 

1 

2 6 
5 3 

10 

∞ 
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A B 

C 
D 

F 

E 

G 

0 2 

∞ 
 

2 

1 
∞ 
 

∞ 
 

2 

1 
2 

vertex known? cost prev 
A Y 0 
B 2 A 
C 2 A 
D 1 A 
E ∞ 
F ∞ 
G ∞ 

5 

1 
1 

1 

2 6 
5 3 

10 
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A B 

C 
D 

F 

E 

G 

0 2 

6 

2 

1 
1 

5 

2 

1 
2 

vertex known? cost prev 
A Y 0 
B 2 A 
C 1 D 
D Y 1 A 
E 1 D 
F 6 D 
G 5 D 

5 

1 
1 

1 

2 6 
5 3 

10 



A B 

C 
D 

F 

E 

G 

0 2 

2 

2 

1 
1 

5 

2 

1 
2 

vertex known? cost prev 
A Y 0 
B 2 A 
C Y 1 D 
D Y 1 A 
E 1 D 
F 2 C 
G 5 D 

5 

1 
1 

1 

2 6 
5 3 

10 



A B 

C 
D 

F 

E 

G 

0 1 

2 

2 

1 
1 

3 

2 

1 
2 

vertex known? cost prev 
A Y 0 
B 1 E 
C Y 1 D 
D Y 1 A 
E Y 1 D 
F 2 C 
G 3 E 

5 

1 
1 

1 

2 6 
5 3 

10 



A B 

C 
D 

F 

E 

G 

0 1 

2 

2 

1 
1 

3 

2 

1 
2 

vertex known? cost prev 
A Y 0 
B Y 1 E 
C Y 1 D 
D Y 1 A 
E Y 1 D 
F 2 C 
G 3 E 

5 

1 
1 

1 

2 6 
5 3 

10 



84 

A B 

C 
D 

F 

E 

G 

0 1 

2 

2 

1 
1 

3 

2 

1 
2 

vertex known? cost prev 
A Y 0 
B Y 1 E 
C Y 1 D 
D Y 1 A 
E Y 1 D 
F Y 2 C 
G 3 E 

5 

1 
1 

1 

2 6 
5 3 

10 
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•  Does this give us the correct solution? 

Why? 
•  If we consider the “known” cloud as a 

single vertex, we will never add edges 
that form a cycle 

•  Each time, we take the edge that has 
minimal weight going out of the vertex.  

•  This is the cheapest way of connecting 
the two subgraphs. 
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•  Traversals go through all of the edges, in 
the worst case 

•  Need to check if an edge forms a cycle 
or if it has minimal weight. 

•  We can check if it forms a cycle by 
verifying if the other vertex is in the 
“known cloud” O(1) 

•  How long to check if it is minimal?  
O(log |V|) if we use a priority queue 
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PRIM’S ALGORITHM 
•  O(|E| log |V|) 

•  We can use a priority queue to store all of 
our vertices, and let the edges to them be the 
priority. 

•  Use the decreaseKey() function when the 
edge to a vertex changes. 

•  Without the priority queue, both Prim’s and 
Dijkstra’s run in O(|E||V|) 
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•  Prim’s algorithm works from the vertices, 

and builds a contiguous spanning tree 
•  The spanning tree grows out from a single 

vertex 
•  Kruskal’s Algorithm adds edges based on 

their weight 
•  Must check for cycles  
•  Use the union-find data structure to speed up 

this operation 
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KRUSKAL’S ALGORITHM 
•  Pseudocode: 

•  Sort the edges (or place them into a heap) 
•  Create a union-find data structure with all 

separate vertices 
•  For each edge, add it to the minimum 

spanning tree if the two vertices don’t have 
the same representative in the union find 

•  Union the two vertices in the union find 
•  Stop after you’ve added |V|-1 edges 
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) 

Note: At each step, the union/find sets are the trees in the forest 
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•  Until the MST is complete: 

•  Pull the minimum edge out of the heap  
O(log |E|) 

•  Check if it forms a cycle O(log |V|) 
•  How many times does the loop run? O(E) 
•  O(|E| log |E|) 
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COMPARISONS 
•  Prim’s  

•  O(|E| log |V|) 
•  Kruskal’s 

•  O(|E| log |E|) 
•  Since |E| must be at least |V|-1 for the graph 

to be connected, which do we prefer? 
•  Since |E| is at most |V|2, log|E| is at most 

log(|V|2) which is 2log|V|.  
•  So log|E| is O(log|V|)  
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