
CSE 332 
AUGUST 9TH  – DIJKSTRAS ALGORITHM 
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ADMINISTRIVIA 
•  P3 checkpoint today 
•  P2 out this week 
•  Exam token regrades out tonight 
•  Exam review next Tuesday TBD 



GRAPHS REVIEW 
•  What is some of the terminology for 

graphs and what do those terms mean? 
•  Vertices and Edges 
•  Directed v. Undirected 
•  In-degree and out-degree 
•  Connected 
•  Weighted v. unweighted 
•  Cyclic v. acyclic 
•  DAG: Directed Acyclic Graph 



TRAVERSALS 
•  For an arbitrary graph and starting node 

v, find all nodes reachable from v. 
•  There exists a path from v 
•  Doing something or “processing” each node 
•  Determines if an undirected graph is connected? 

If a traversal goes through all vertices, then it is 
connected 

•  Basic idea 
•  Traverse through the nodes like a tree 
•  Mark the nodes as visited to prevent cycles and 

from processing the same node twice 



COMPARISON 
Breadth-first always finds shortest length paths, i.e., “optimal 
solutions” 

•  Better for “what is the shortest path from x to y” 

But depth-first can use less space in finding a path 
•  If longest path in the graph is p and highest out-degree is d 

then DFS stack never has more than d*p elements 
•  But a queue for BFS may hold O(|V|) nodes 

A third approach (useful in Artificial Intelligence) 
•  Iterative deepening (IDFS):  

•  Try DFS but disallow recursion more than K levels deep 
•  If that fails, increment K and start the entire search over 

•  Like BFS, finds shortest paths.  Like DFS, less space. 

 



SINGLE SOURCE 
SHORTEST PATHS 

Done: BFS to find the minimum path length from v to u in  
 O(|E|+|V|) 

 
Actually, can find the minimum path length from v to every node   

•  Still O(|E|+|V|) 
•  No faster way for a “distinguished” destination in the worst-case 

Now:  Weighted graphs  
 

Given a weighted graph and node v,  
find the minimum-cost path from v to every node  

 

As before, asymptotically no harder than for one destination 
Unlike before, BFS will not work -> only looks at path length. 



SHORTEST PATH: 
APPLICATIONS 
Driving directions 
 
Cheap flight itineraries 

 

Network routing 

 

Critical paths in project management 



NOT AS EASY 

Why BFS won’t work: Shortest path may not have the fewest edges 
•  Annoying when this happens with costs of flights 
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We will assume there are no negative weights 
•  Problem is ill-defined if there are negative-cost cycles 
•  Today’s algorithm is wrong if edges can be negative 

–  There are other, slower (but not terrible) algorithms 
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DIJKSTRA’S ALGORITHM 
The idea: reminiscent of BFS, but adapted to handle weights 

•  Grow the set of nodes whose shortest distance has been 
computed 

•  Nodes not in the set will have a “best distance so far” 
•  A priority queue will turn out to be useful for efficiency 

 



DIJKSTRA’S ALGORITHM 

Initially, start node has cost 0 and all other nodes have cost ∞ 
 

At each step: 
•  Pick closest unknown vertex v 
•  Add it to the “cloud” of known vertices 
•  Update distances for nodes with edges from v 

That’s it!  (But we need to prove it produces correct answers) 
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THE ALGORITHM 
1.  For each node v, set  v.cost = ∞ and v.known = false 
2.  Set source.cost = 0 
3.  While there are unknown nodes in the graph 

a)  Select the unknown node v with lowest cost 
b)  Mark v as known 
c)  For each edge (v,u) with weight w, 

      c1 = v.cost + w // cost of best path through v to u    
     c2 = u.cost   // cost of best path to u previously known 
           if(c1 < c2){ // if the path through v is better 

          u.cost = c1 
                u.path = v // for computing actual paths 

      } 
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IMPORTANT 
FEATURES 
 
When a vertex is marked known, the cost of the shortest path 
to that node is known 

•  The path is also known by following back-pointers 

 

While a vertex is still not known, another shorter path to it 
might still be found 
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FEATURES  
When a vertex is marked known,  
the cost of the shortest path to that node is known 

•  The path is also known by following back-pointers 
 
While a vertex is still not known,  
another shorter path to it might still be found 
 
Note: The “Order Added to Known Set” is not important 

•  A detail about how the algorithm works (client doesn’t care) 
•  Not used by the algorithm (implementation doesn’t care) 
•  It is sorted by path-cost, resolving ties in some way 

•  Helps give intuition of why the algorithm works 



INTERPRETING THE RESULTS 
Now that we’re done, how do we get the path from, say, A to E? 
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How would this have worked differently if we were only 
interested in: 

•  The path from A to G? 
•  The path from A to E? 
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RUNTIME AND 
IMPLEMENTATION 
•  To keep track of which vertex should be 

added next, we use a priority queue. 
•  Each of the |V| vertices will need to be added 

into the queue 
•  Together this is O(|V| log |V|) 

•  Each edge has an opportunity to change the 
value in the heap (notice this means we need the 
change priority function) 
•  For each edge, change priority is a log|V| 

operation, so this is total O(|E| log |V|) 
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algorithm, if smartly implemented using a 
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•  If the graph is connected, however (which is 

reasonable to assume since we’re trying to find a 
path from a single source to all other nodes, then 
there must be at least |V|-1 edges. 
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RUNTIME AND 
IMPLEMENTATION 
•  Together then, we have that Dijkstra’s 

algorithm, if smartly implemented using a 
priority queue is O(|V| log |V| + |E| log |E|) 
•  If the graph is connected, however (which is 

reasonable to assume since we’re trying to find a 
path from a single source to all other nodes, then 
there must be at least |V|-1 edges. 

•  This algorithm is O(|E| log |V|) time 
•  Without the priority queue, it runs in O(|E||V|) 

time 
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CORRECTNESS 
•  Dijkstra’s algorithm is an example of a 

greedy-first approach 
•  Take the closest next available vertex and add it 

to the known cloud 
•  Since we do not allow negative weights, we 

know that there cannot be a way from A to v that 
is shorter if it is currently the shortest available 
path 

•  Recursively path-finds, the last element only 
knows what vertex came before us, and how to 
optimally reach that—single source to ALL other 
vertices 
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NEXT CLASS 
•  Minimum spanning trees 

•  Prim’s and Kruskal’s Algorithms 


