CSE 332

AUGUST 9TH – DIJKSTRAS ALGORITHM

P3 checkpoint today

- P3 checkpoint today
- P2 out this week

- P3 checkpoint today
- P2 out this week
- Exam token regrades out tonight

- P3 checkpoint today
- P2 out this week
- Exam token regrades out tonight
- Exam review next Tuesday TBD

GRAPHS REVIEW

- What is some of the terminology for graphs and what do those terms mean?
 - Vertices and Edges
 - Directed v. Undirected
 - In-degree and out-degree
 - Connected
 - Weighted v. unweighted
 - Cyclic v. acyclic
 - DAG: Directed Acyclic Graph

TRAVERSALS

- For an arbitrary graph and starting node v, find all nodes *reachable* from v.
 - There exists a path from v
 - Doing something or "processing" each node
 - Determines if an undirected graph is connected?
 If a traversal goes through all vertices, then it is connected
- Basic idea
 - Traverse through the nodes like a tree
 - Mark the nodes as visited to prevent cycles and from processing the same node twice

COMPARISON

Breadth-first always finds shortest length paths, i.e., "optimal solutions"

• Better for "what is the shortest path from **x** to **y**"

But depth-first can use less space in finding a path

- If *longest path* in the graph is p and highest out-degree is d then DFS stack never has more than d*p elements
- But a queue for BFS may hold O(|V|) nodes

A third approach (useful in Artificial Intelligence)

- Iterative deepening (IDFS):
 - Try DFS but disallow recursion more than κ levels deep
 - If that fails, increment κ and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

SINGLE SOURCE SHORTEST PATHS

Done: BFS to find the minimum path length from v to u in O(|E|+|V|)

Actually, can find the minimum path length from v to every node

- Still O(|E|+|V|)
- No faster way for a "distinguished" destination in the worst-case

Now: Weighted graphs

Given a weighted graph and node v, find the minimum-cost path from v to every node

As before, asymptotically no harder than for one destination Unlike before, BFS will not work -> only looks at path length.

SHORTEST PATH: APPLICATIONS

Driving directions

Cheap flight itineraries

Network routing

Critical paths in project management

Why BFS won't work: Shortest path may not have the fewest edges

Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- *Today's algorithm* is *wrong* if *edges* can be negative
 - There are other, slower (but not terrible) algorithms

DIJKSTRA'S ALGORITHM

The idea: reminiscent of BFS, but adapted to handle weights

- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency

DIJKSTRA'S ALGORITHM

Initially, start node has cost 0 and all other nodes have cost ∞

At each step:

- Pick closest unknown vertex v
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from v

That's it! (But we need to prove it produces correct answers)

THE ALGORITHM

- 1. For each node v, set v.cost = ∞ and v.known = false
- **2.** Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node \mathbf{v} with lowest cost
 - b) Mark **v** as known
 - c) For each edge (v, u) with weight w,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
 u.cost = c1
 u.path = v // for computing actual paths
}</pre>

IMPORTANT FEATURES

When a vertex is marked known, the cost of the shortest path to that node is known

• The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it *might* still be found

vertex	known?	cost	path
A		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	
Н		??	

Α

vertex	known?	cost	path
А	Y	0	
В		≤ 2	А
С		≤ 1	А
D		≤ 4	А
E		??	
F		??	
G		??	
Н		??	

A, C

vertex	known?	cost	path
А	Y	0	
В		≤ 2	А
С	Y	1	A
D		≤ 4	А
E		≤ 12	С
F		??	
G		??	
Н		??	

A, C, B

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D		≤ 4	А
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

A, C, B, D

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

A, C, B, D, F

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	A
D	Y	4	А
E		≤ 12	С
F	Y	4	В
G		??	
Н		≤ 7	F

A, C, B, D, F, H

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F	Y	4	В
G		≤ 8	Н
Н	Y	7	F

A, C, B, D, F, H, G

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

A, C, B, D, F, H, G, E

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

FEATURES

When a vertex is marked known, the cost of the shortest path to that node is known

• The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
 - Helps give intuition of why the algorithm works

INTERPRETING THE RESULTS

Now that we're done, how do we get the path from, say, A to E?

How would this have worked differently if we were only interested in:

- The path from A to G?
- The path from A to E?

vertex	known?	cost	path
А		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

Α ?? В С ≤ 2 Α D ≤ 1 Α Ε ?? ?? F G ??

cost

0

path

known?

Y

vertex

Α

A, D

vertex	known?	cost	path
Α	Y	0	
В		≤ 6	D
С		≤ 2	A
D	Υ	1	A
E		≤ 2	D
F		≤ 7	D
G		≤ 6	D

A, D, C

vertex	known?	cost	path
А	Y	0	
В		≤ 6	D
С	Y	2	А
D	Y	1	А
Е		≤ 2	D
F		≤ 4	С
G		≤ 6	D

A, D, C, E

vertex	known?	cost	path
А	Y	0	
В		≤ 3	Е
С	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	С
G		≤ 6	D

A, D, C, E, B

vertex	known?	cost	path
А	Y	0	
В	Y	3	E
С	Y	2	Α
D	Y	1	A
E	Y	2	D
F		≤ 4	С
G		≤ 6	D

A, D, C, E, B, F

vertex	known?	cost	path
A	Y	0	
В	Y	3	E
С	Y	2	A
D	Y	1	Α
E	Y	2	D
F	Y	4	С
G		≤ 6	D

A, D, C, E, B, F, G

vertex	known?	cost	path
А	Y	0	
В	Y	3	E
С	Y	2	А
D	Y	1	А
Е	Y	2	D
F	Y	4	С
G	Y	6	D

- To keep track of which vertex should be added next, we use a priority queue.
 - Each of the |V| vertices will need to be added into the queue

- To keep track of which vertex should be added next, we use a priority queue.
 - Each of the |V| vertices will need to be added into the queue
 - Together this is O(|V| log |V|)

- To keep track of which vertex should be added next, we use a priority queue.
 - Each of the |V| vertices will need to be added into the queue
 - Together this is O(|V| log |V|)
- Each edge has an opportunity to change the value in the heap (notice this means we need the change priority function)
 - For each edge, change priority is a log|V| operation, so this is total O(|E| log |V|)

- Together then, we have that Dijkstra's algorithm, if smartly implemented using a priority queue is O(|V| log |V| + |E| log |V|)
 - If the graph is connected, however (which is reasonable to assume since we're trying to find a path from a single source to all other nodes, then there must be at least |V|-1 edges.

- Together then, we have that Dijkstra's algorithm, if smartly implemented using a priority queue is O(|V| log |V| + |E| log |E|)
 - If the graph is connected, however (which is reasonable to assume since we're trying to find a path from a single source to all other nodes, then there must be at least |V|-1 edges.
 - This algorithm is O(|E| log |V|) time

- Together then, we have that Dijkstra's algorithm, if smartly implemented using a priority queue is O(|V| log |V| + |E| log |E|)
 - If the graph is connected, however (which is reasonable to assume since we're trying to find a path from a single source to all other nodes, then there must be at least |V|-1 edges.
 - This algorithm is O(|E| log |V|) time
 - Without the priority queue, it runs in O(|E||V|) time

Dijkstra's algorithm is an example of a greedy-first approach

- Dijkstra's algorithm is an example of a greedy-first approach
 - Take the closest next available vertex and add it to the known cloud

- Dijkstra's algorithm is an example of a greedy-first approach
 - Take the closest next available vertex and add it to the known cloud
 - Since we do not allow negative weights, we know that there cannot be a way from A to v that is shorter if it is currently the shortest available path

- Dijkstra's algorithm is an example of a greedy-first approach
 - Take the closest next available vertex and add it to the known cloud
 - Since we do not allow negative weights, we know that there cannot be a way from A to v that is shorter if it is currently the shortest available path
 - Recursively path-finds, the last element only knows what vertex came before us, and how to optimally reach that—single source to ALL other vertices

NEXT CLASS

Minimum spanning trees

NEXT CLASS

- Minimum spanning trees
 - Prim's and Kruskal's Algorithms