CSE 332

AUGUST 9™ - DIJKSTRAS ALGORITHM

ADMINISTRIVIA

 P3 checkpoint today

ADMINISTRIVIA

 P3 checkpoint today
* P2 out this week

ADMINISTRIVIA

 P3 checkpoint today
* P2 out this week

 Exam token regrades out tonight

ADMINISTRIVIA

 P3 checkpoint today
* P2 out this week
 Exam token regrades out tonight

« Exam review next Tuesday TBD

GRAPHS REVIEW

 What is some of the terminology for
graphs and what do those terms mean?

* Vertices and Edges

* Directed v. Undirected

* In-degree and out-degree

- Connected

- Weighted v. unweighted

* Cyclic v. acyclic

* DAG: Directed Acyclic Graph

TRAVERSALS

 For an arbitrary graph and starting node
v, find all nodes reachable from v.

* There exists a path from v
* Doing something or “processing” each node

» Determines if an undirected graph is connected?
If a traversal goes through all vertices, then it is
connected

Basic idea

» Traverse through the nodes like a tree

- Mark the nodes as visited to prevent cycles and
from processing the same node twice

COMPARISON

Breadth-first always finds shortest length paths, i.e., “optimal
solutions”

- Better for “what is the shortest path from x to y”

But depth-first can use less space in finding a path
* If longest path in the graph is p and highest out-degree is d
then DFS stack never has more than d*p elements
* But a queue for BFS may hold O(|V|) nodes

A third approach (useful in Artificial Intelligence)

* Iterative deepening (IDFS):
« Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over

* Like BFS, finds shortest paths. Like DFS, less space.

SINGLE SOURCE
SHORTEST PATHS

Done: BFS to find the minimum path length from v to u in
O(|E[+[VI)

Actually, can find the minimum path length from v to every node
o Still O(|E|+|V])
* No faster way for a “distinguished” destination in the worst-case

Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

As before, asymptotically no harder than for one destination
Unlike before, BFS will not work -> only looks at path length.

SHORTEST PATH:
APPLICATIONS

Driving directions
Cheap flight itineraries
Network routing

Critical paths in project management

NOT AS EASY

100 100
100 100 @

500

Why BFS won’t work: Shortest path may not have the fewest edges
« Annoying when this happens with costs of flights

We will assume there are no negative weights
« Problem is ill-defined if there are negative-cost cycles
« Today’s algorithm is wrong if edges can be negative
— There are other, slower (but not terrible) algorithms

DIJKSTRA’S ALGORITHM

The idea: reminiscent of BFS, but adapted to handle weights
» Grow the set of nodes whose shortest distance has been
computed
* Nodes not in the set will have a “best distance so far”
* A priority queue will turn out to be useful for efficiency

DIJKSTRA’S ALGORITHM
0 2 4 W

A B F H
1
5 2 1
4 9 10 3 (G)¥
v 2 C1
| 1
4D
7 12

Initially, start node has cost 0 and all other nodes have cost ®©

At each step:

* Pick closest unknown vertex v
* Add it to the “cloud” of known vertices
« Update distances for nodes with edges from v

That’s it! (But we need to prove it produces correct answers)

THE ALGORITHM

14

For each node v, set v.cost = @ and v.known = false

Set source.cost = 0
While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known

c) Foreach edge (v,u) with weight w,
cl = v.cost + w//costof best path through v to u

c2 = u.cost //costof best path to u previously known
if (cl < c2) { /ifthe path through v is better

u.cost = cl
u.path = v //for computing actual paths

}

IMPORTANT
FEATURES

When a vertex is marked known, the cost of the shortest path
to that node is known

* The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it
might still be found

0 W
A B
1
4 9 5 10 3
E) 2 C W1
7 = ¥

Order Added to Known Set:

4
H
1
4
vertex | known? cost path
A 0
B ?7?
C ?7?
D ?7?
E ?7?
F ?7?
G ?7?
H ?7?

0 2
A B
1
4 9 51 10
v 2 C
4D IE
7 W

Order Added to Known Set:

A

4
H
1
4
vertex | known? cost path
A Y 0
B <2 A
C <1 A
D <4 A
E ?7?
F ?7?
G ?7?
H ?7?

0 2
A B
1
4 9 51 10
) 4
HO == Z-u
7 12

Order Added to Known Set:

A C

4
H
1
4
vertex | known? cost path
A Y 0
B <2 A
C Y 1 A
D <4 A
E <12 C
F ?7?
G ?7?
H ?7?

0 2
A B
1
4 9 51 10
v
HO == Z-u
7 12

Order Added to Known Set:

A C B

4
H
1
4
vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D <4 A
E <12 C
F <4 B
G ?7?
H ?7?

0 2
A B
1
4 9 51 10 3
\ 4 C
2 |
4 D

7 12

Order Added to Known Set:

A CB,D

4
H
1
4
vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F <4 B
G ?7?
H ?7?

Order Added to Known Set:

A CB,D,F

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G ?7?

H <7 F

Order Added to Known Set:

A CBDFH

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G <8 H
H Y 7 F

Order Added to Known Set:

A CBD,FHG

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

known?

path

A C B D,FH G, E

<|=<|<|=<|=<|<]|x<

M| IT[(@|OI>|>>

FEATURES

When a vertex is marked known,
the cost of the shortest path to that node is known

* The path is also known by following back-pointers

While a vertex is still not known,
another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important

A detail about how the algorithm works (client doesn’t care)
* Not used by the algorithm (implementation doesn’t care)

* |t is sorted by path-cost, resolving ties in some way
» Helps give intuition of why the algorithm works

INTERPRETING THE RESULTS

Now that we’re done, how do we get the path from, say, A to E?

Order Added to Known Set:

A C B D,FH G, E

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

How would this have worked differently if we were only

interested in:

* The path from Ato G?
* The path from Ato E?

Order Added to Known Set:

A C B D,FH G, E

27

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

0 W
2
A Brx_1
1
2{ : |
{C l 5
6
2N\ ¥ 10 G
F

Order Added to Known Set:

28

vertex | known? cost path

A 0

B ?7?
C ?7?
D ?7?
E ?7?
F ?7?
G ?7?

0 W
2
A BM_1

1

2 1 /3 |

\ 4 1 D 5

o C)
Ny 108

F

Order Added to Known Set:

A

vertex | known? cost path
A Y 0
B ?7?
C <2 A
D <1 A
E ?7?
F ?7?
G ?7?

Order Added to Known Set:

A D

30

vertex | known? cost path

A Y 0

B <6 D
C <2 A
D Y 1 A
E <2 D
F <7 D
G <6 D

Order Added to Known Set:

A D,C

vertex | known? cost path

A Y 0

B <6 D
C Y 2 A
D Y 1 A
E <2 D
F <4 C
G <6 D

Order Added to Known Set:

A D CE

vertex | known? cost path

A Y 0

B <3 E
C Y 2 A
D Y 1 A
E Y 2 D
F <4 C
G <6 D

Order Added to Known Set:

A D,CE,B

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F <4 C
G <6 D

Order Added to Known Set:

A,D,C EBF

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G <6 D

Order Added to Known Set:

A,D,C,E,BFG

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

RUNTIME AND
IMPLEMENTATION

* To keep track of which vertex should be
added next, we use a priority queue.

- Each of the |V| vertices will need to be added
Into the queue

RUNTIME AND
IMPLEMENTATION

* To keep track of which vertex should be
added next, we use a priority queue.

- Each of the |V| vertices will need to be added
Into the queue

» Together this is O(|V] log |V|)

RUNTIME AND
IMPLEMENTATION

* To keep track of which vertex should be
added next, we use a priority queue.

- Each of the |V| vertices will need to be added
Into the queue

» Together this is O(|V] log |V|)

 Each edge has an opportunity to change the
value in the heap (notice this means we need the

change priority function)

* For each edge, change priority is a log|V|
operation, so this is total O(|E| log |V])

RUNTIME AND
IMPLEMENTATION

 Together then, we have that Dijkstra’s
algorithm, if smartly implemented using a
priority queue is O(|V| log |V| + |E| log |V])

- If the graph is connected, however (which is
reasonable to assume since we're trying to find a
path from a single source to all other nodes, then
there must be at least |V|-1 edges.

RUNTIME AND
IMPLEMENTATION

 Together then, we have that Dijkstra’s
algorithm, if smartly implemented using a
priority queue is O(|V| log |V| + |E| log |E|)

- If the graph is connected, however (which is
reasonable to assume since we're trying to find a

path from a single source to all other nodes, then
there must be at least |V|-1 edges.

« This algorithm is O(|E| log |V]) time

RUNTIME AND
IMPLEMENTATION

 Together then, we have that Dijkstra’s
algorithm, if smartly implemented using a
priority queue is O(|V| log |V| + |E| log |E|)

- If the graph is connected, however (which is
reasonable to assume since we're trying to find a

path from a single source to all other nodes, then
there must be at least |V|-1 edges.

« This algorithm is O(|E| log |V]) time
« Without the priority queue, it runs in O(|E||V|)
time

CORRECTNESS

* Dijkstra’s algorithm is an example of a
greedy-first approach

CORRECTNESS

* Dijkstra’s algorithm is an example of a
greedy-first approach

* Take the closest next available vertex and add it
to the known cloud

CORRECTNESS

* Dijkstra’s algorithm is an example of a
greedy-first approach

* Take the closest next available vertex and add it
to the known cloud

+ Since we do not allow negative weights, we
know that there cannot be a way from A to v that
is shorter if it is currently the shortest available
path

CORRECTNESS

* Dijkstra’s algorithm is an example of a
greedy-first approach

* Take the closest next available vertex and add it
to the known cloud

+ Since we do not allow negative weights, we
know that there cannot be a way from A to v that
is shorter if it is currently the shortest available
path

* Recursively path-finds, the last element only
knows what vertex came before us, and how to
optimally reach that—single source to ALL other
vertices

NEXT CLASS

 Minimum spanning trees

NEXT CLASS

 Minimum spanning trees

* Prim’s and Kruskal's Algorithms

