
CSE 332
AUGUST 9TH – DIJKSTRAS ALGORITHM

ADMINISTRIVIA
•  P3 checkpoint today

ADMINISTRIVIA
•  P3 checkpoint today
•  P2 out this week

ADMINISTRIVIA
•  P3 checkpoint today
•  P2 out this week
•  Exam token regrades out tonight

ADMINISTRIVIA
•  P3 checkpoint today
•  P2 out this week
•  Exam token regrades out tonight
•  Exam review next Tuesday TBD

GRAPHS REVIEW
•  What is some of the terminology for

graphs and what do those terms mean?
•  Vertices and Edges
•  Directed v. Undirected
•  In-degree and out-degree
•  Connected
•  Weighted v. unweighted
•  Cyclic v. acyclic
•  DAG: Directed Acyclic Graph

TRAVERSALS
•  For an arbitrary graph and starting node

v, find all nodes reachable from v.
•  There exists a path from v
•  Doing something or “processing” each node
•  Determines if an undirected graph is connected?

If a traversal goes through all vertices, then it is
connected

•  Basic idea
•  Traverse through the nodes like a tree
•  Mark the nodes as visited to prevent cycles and

from processing the same node twice

COMPARISON
Breadth-first always finds shortest length paths, i.e., “optimal
solutions”

•  Better for “what is the shortest path from x to y”

But depth-first can use less space in finding a path
•  If longest path in the graph is p and highest out-degree is d

then DFS stack never has more than d*p elements
•  But a queue for BFS may hold O(|V|) nodes

A third approach (useful in Artificial Intelligence)
•  Iterative deepening (IDFS):

•  Try DFS but disallow recursion more than K levels deep
•  If that fails, increment K and start the entire search over

•  Like BFS, finds shortest paths. Like DFS, less space.

SINGLE SOURCE
SHORTEST PATHS

Done: BFS to find the minimum path length from v to u in
 O(|E|+|V|)

Actually, can find the minimum path length from v to every node

•  Still O(|E|+|V|)
•  No faster way for a “distinguished” destination in the worst-case

Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

As before, asymptotically no harder than for one destination
Unlike before, BFS will not work -> only looks at path length.

SHORTEST PATH:
APPLICATIONS
Driving directions

Cheap flight itineraries

Network routing

Critical paths in project management

NOT AS EASY

Why BFS won’t work: Shortest path may not have the fewest edges
•  Annoying when this happens with costs of flights

500

100
100 100

100

We will assume there are no negative weights
•  Problem is ill-defined if there are negative-cost cycles
•  Today’s algorithm is wrong if edges can be negative

–  There are other, slower (but not terrible) algorithms

7

10 5

-11 A B

DIJKSTRA’S ALGORITHM
The idea: reminiscent of BFS, but adapted to handle weights

•  Grow the set of nodes whose shortest distance has been
computed

•  Nodes not in the set will have a “best distance so far”
•  A priority queue will turn out to be useful for efficiency

DIJKSTRA’S ALGORITHM

Initially, start node has cost 0 and all other nodes have cost ∞

At each step:
•  Pick closest unknown vertex v
•  Add it to the “cloud” of known vertices
•  Update distances for nodes with edges from v

That’s it! (But we need to prove it produces correct answers)

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4 5

THE ALGORITHM
1.  For each node v, set v.cost = ∞ and v.known = false
2.  Set source.cost = 0
3.  While there are unknown nodes in the graph

a)  Select the unknown node v with lowest cost
b)  Mark v as known
c)  For each edge (v,u) with weight w,

 c1 = v.cost + w // cost of best path through v to u
 c2 = u.cost // cost of best path to u previously known
 if(c1 < c2){ // if the path through v is better

 u.cost = c1
 u.path = v // for computing actual paths

 }

14

IMPORTANT
FEATURES

When a vertex is marked known, the cost of the shortest path
to that node is known

•  The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it
might still be found

A B

D
C

F H

E

G

0

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A 0
B ??
C ??
D ??
E ??
F ??
G ??
H ??

5

Order Added to Known Set:

A B

D
C

F H

E

G

0 2

4

1

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E ??
F ??
G ??
H ??

5

Order Added to Known Set:

A

A B

D
C

F H

E

G

0 2

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ??
G ??
H ??

5

Order Added to Known Set:

A, C

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G ??
H ??

5

Order Added to Known Set:

A, C, B

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G ??
H ??

5

Order Added to Known Set:

A, C, B, D

A B

D
C

F H

E

G

0 2 4 7

4

1

12

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ??
H ≤ 7 F

5

Order Added to Known Set:

A, C, B, D, F

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

FEATURES
When a vertex is marked known,
the cost of the shortest path to that node is known

•  The path is also known by following back-pointers

While a vertex is still not known,
another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important

•  A detail about how the algorithm works (client doesn’t care)
•  Not used by the algorithm (implementation doesn’t care)
•  It is sorted by path-cost, resolving ties in some way

•  Helps give intuition of why the algorithm works

INTERPRETING THE RESULTS
Now that we’re done, how do we get the path from, say, A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4 5
vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

How would this have worked differently if we were only
interested in:

•  The path from A to G?
•  The path from A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4 5
vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

27

28

A B

C
D

F

E

G

0

2

1
2

vertex known? cost path
A 0
B ??
C ??
D ??
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A B

C
D

F

E

G

0

2

1

2

1
2

vertex known? cost path
A Y 0
B ??
C ≤  2 A
D ≤ 1 A
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A

30

A B

C
D

F

E

G

0 6

7

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B ≤ 6 D
C ≤  2 A
D Y 1 A
E ≤ 2 D
F ≤ 7 D
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D

A B

C
D

F

E

G

0 6

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B ≤ 6 D
C Y 2 A
D Y 1 A
E ≤ 2 D
F ≤ 4 C
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B ≤ 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F ≤ 4 C
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F ≤ 4 C
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B, F

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

RUNTIME AND
IMPLEMENTATION
•  To keep track of which vertex should be

added next, we use a priority queue.
•  Each of the |V| vertices will need to be added

into the queue

RUNTIME AND
IMPLEMENTATION
•  To keep track of which vertex should be

added next, we use a priority queue.
•  Each of the |V| vertices will need to be added

into the queue
•  Together this is O(|V| log |V|)

RUNTIME AND
IMPLEMENTATION
•  To keep track of which vertex should be

added next, we use a priority queue.
•  Each of the |V| vertices will need to be added

into the queue
•  Together this is O(|V| log |V|)

•  Each edge has an opportunity to change the
value in the heap (notice this means we need the
change priority function)
•  For each edge, change priority is a log|V|

operation, so this is total O(|E| log |V|)

RUNTIME AND
IMPLEMENTATION
•  Together then, we have that Dijkstra’s

algorithm, if smartly implemented using a
priority queue is O(|V| log |V| + |E| log |V|)
•  If the graph is connected, however (which is

reasonable to assume since we’re trying to find a
path from a single source to all other nodes, then
there must be at least |V|-1 edges.

RUNTIME AND
IMPLEMENTATION
•  Together then, we have that Dijkstra’s

algorithm, if smartly implemented using a
priority queue is O(|V| log |V| + |E| log |E|)
•  If the graph is connected, however (which is

reasonable to assume since we’re trying to find a
path from a single source to all other nodes, then
there must be at least |V|-1 edges.

•  This algorithm is O(|E| log |V|) time

RUNTIME AND
IMPLEMENTATION
•  Together then, we have that Dijkstra’s

algorithm, if smartly implemented using a
priority queue is O(|V| log |V| + |E| log |E|)
•  If the graph is connected, however (which is

reasonable to assume since we’re trying to find a
path from a single source to all other nodes, then
there must be at least |V|-1 edges.

•  This algorithm is O(|E| log |V|) time
•  Without the priority queue, it runs in O(|E||V|)

time

CORRECTNESS
•  Dijkstra’s algorithm is an example of a

greedy-first approach

CORRECTNESS
•  Dijkstra’s algorithm is an example of a

greedy-first approach
•  Take the closest next available vertex and add it

to the known cloud

CORRECTNESS
•  Dijkstra’s algorithm is an example of a

greedy-first approach
•  Take the closest next available vertex and add it

to the known cloud
•  Since we do not allow negative weights, we

know that there cannot be a way from A to v that
is shorter if it is currently the shortest available
path

CORRECTNESS
•  Dijkstra’s algorithm is an example of a

greedy-first approach
•  Take the closest next available vertex and add it

to the known cloud
•  Since we do not allow negative weights, we

know that there cannot be a way from A to v that
is shorter if it is currently the shortest available
path

•  Recursively path-finds, the last element only
knows what vertex came before us, and how to
optimally reach that—single source to ALL other
vertices

NEXT CLASS
•  Minimum spanning trees

NEXT CLASS
•  Minimum spanning trees

•  Prim’s and Kruskal’s Algorithms

