CSE 332

AUGUST 9TH - DIJKSTRAS ALGORITHM

ADMINISTRIVIA

- P3 checkpoint today

ADMINISTRIVIA

- P3 checkpoint today
- P2 out this week

ADMINISTRIVIA

- P3 checkpoint today
- P2 out this week
- Exam token regrades out tonight

ADMINISTRIVIA

- P3 checkpoint today
- P2 out this week
- Exam token regrades out tonight
- Exam review next Tuesday TBD

GRAPHS REVIEW

- What is some of the terminology for graphs and what do those terms mean?
- Vertices and Edges
- Directed v. Undirected
- In-degree and out-degree
- Connected
- Weighted v. unweighted
- Cyclic v. acyclic
- DAG: Directed Acyclic Graph

TRAVERSALS

- For an arbitrary graph and starting node v , find all nodes reachable from v .
- There exists a path from v
- Doing something or "processing" each node
- Determines if an undirected graph is connected? If a traversal goes through all vertices, then it is connected
- Basic idea
- Traverse through the nodes like a tree
- Mark the nodes as visited to prevent cycles and from processing the same node twice

COMPARISON

Breadth-first always finds shortest length paths, i.e., "optimal solutions"

- Better for "what is the shortest path from \mathbf{x} to \mathbf{y} "

But depth-first can use less space in finding a path

- If longest path in the graph is p and highest out-degree is d then DFS stack never has more than d*p elements
- But a queue for BFS may hold $O(|\mathrm{~V}|)$ nodes

A third approach (useful in Artificial Intelligence)

- Iterative deepening (IDFS):
- Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

SINGLE SOURCE SHORTEST PATHS

Done: BFS to find the minimum path length from v to u in $O(|E|+|V|)$

Actually, can find the minimum path length from v to every node

- Still O(|E|+|V|)
- No faster way for a "distinguished" destination in the worst-case

Now: Weighted graphs
Given a weighted graph and node \mathbf{v}, find the minimum-cost path from v to every node

As before, asymptotically no harder than for one destination Unlike before, BFS will not work -> only looks at path length.

SHORTEST PATH: APPLICATIONS

Driving directions

Cheap flight itineraries

Network routing

Critical paths in project management

NOT AS EASY

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
- There are other, slower (but not terrible) algorithms

DIJKSTRA'S ALGORITHM

The idea: reminiscent of BFS, but adapted to handle weights

- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency

DIJKSTRA'S ALGORITHM

Initially, start node has cost 0 and all other nodes have cost ∞
At each step:

- Pick closest unknown vertex v
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from \mathbf{v}

That's it! (But we need to prove it produces correct answers)

THE ALGORITHM

1. For each node v, set v.cost $=\infty$ and v.known $=$ false
2. Set source. cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node \mathbf{v} with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, u) with weight \mathbf{w}, $\mathbf{c 1}=\mathrm{v}$.cost $+\mathbf{w} / /$ cost of best path through v to u c2 = u.cost // cost of best path to u previously known if (c1 < c2) \{ // if the path through v is better
u.cost $=c 1$
u.path $=$ v // for computing actual paths
\}

IMPORTANT FEATURES

When a vertex is marked known, the cost of the shortest path to that node is known

- The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it might still be found

FEATURES

When a vertex is marked known, the cost of the shortest path to that node is known

- The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
- Helps give intuition of why the algorithm works

INTERPRETING THE RESULTS

Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

How would this have worked differently if we were only interested in:

- The path from A to G ?
- The path from A to E ?

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Order Added to Known Set:

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Order Added to Known Set:
A

vertex	known?	cost	path
A	Y	0	
B		$? ?$	
C		≤ 2	A
D		≤ 1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Order Added to Known Set:
A, D

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C		≤ 2	A
D	Y	1	A
E		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Order Added to Known Set:
A, D, C

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C	Y	2	A
D	Y	1	A
E		≤ 2	D
F		≤ 4	C
G		≤ 6	D

Order Added to Known Set:
A, D, C, E

vertex	known?	cost	path
A	Y	0	
B		≤ 3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Order Added to Known Set:
A, D, C, E, B

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Order Added to Known Set:
A, D, C, E, B, F

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G		≤ 6	D

Order Added to Known Set:
A, D, C, E, B, F, G

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

RUNTIME AND IMPLEMENTATION

- To keep track of which vertex should be added next, we use a priority queue.
- Each of the |V| vertices will need to be added into the queue

RUNTIME AND IMPLEMENTATION

- To keep track of which vertex should be added next, we use a priority queue.
- Each of the |V| vertices will need to be added into the queue
- Together this is $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|)$

RUNTIME AND

IMPLEMENTATION

- To keep track of which vertex should be added next, we use a priority queue.
- Each of the |V| vertices will need to be added into the queue
- Together this is $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|)$
- Each edge has an opportunity to change the value in the heap (notice this means we need the change priority function)
- For each edge, change priority is a log|V| operation, so this is total $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

RUNTIME AND

IMPLEMENTATION

- Together then, we have that Dijkstra's algorithm, if smartly implemented using a priority queue is $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|E| \log |\mathrm{V}|)$
- If the graph is connected, however (which is reasonable to assume since we're trying to find a path from a single source to all other nodes, then there must be at least $|\mathrm{V}|-1$ edges.

RUNTIME AND

IMPLEMENTATION

- Together then, we have that Dijkstra's algorithm, if smartly implemented using a priority queue is $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|E| \log |E|)$
- If the graph is connected, however (which is reasonable to assume since we're trying to find a path from a single source to all other nodes, then there must be at least $|\mathrm{V}|-1$ edges.
- This algorithm is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ time

RUNTIME AND

IMPLEMENTATION

- Together then, we have that Dijkstra's algorithm, if smartly implemented using a priority queue is $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|E| \log |E|)$
- If the graph is connected, however (which is reasonable to assume since we're trying to find a path from a single source to all other nodes, then there must be at least $|\mathrm{V}|-1$ edges.
- This algorithm is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ time
- Without the priority queue, it runs in $\mathrm{O}(|\mathrm{E}||\mathrm{V}|)$ time

CORRECTNESS

- Dijkstra's algorithm is an example of a greedy-first approach

CORRECTNESS

- Dijkstra's algorithm is an example of a greedy-first approach
- Take the closest next available vertex and add it to the known cloud

CORRECTNESS

- Dijkstra's algorithm is an example of a greedy-first approach
- Take the closest next available vertex and add it to the known cloud
- Since we do not allow negative weights, we know that there cannot be a way from A to v that is shorter if it is currently the shortest available path

CORRECTNESS

- Dijkstra's algorithm is an example of a greedy-first approach
- Take the closest next available vertex and add it to the known cloud
- Since we do not allow negative weights, we know that there cannot be a way from A to v that is shorter if it is currently the shortest available path
- Recursively path-finds, the last element only knows what vertex came before us, and how to optimally reach that-single source to ALL other vertices

NEXT CLASS

- Minimum spanning trees

NEXT CLASS

- Minimum spanning trees
- Prim's and Kruskal's Algorithms

