CSE 332

AUGUST 4™ - SYNCHRONIZATION AND
INTRO TO THE GRAPH

ADMINISTRIVIA

* P3 checkpoint today

ADMINISTRIVIA

* P3 checkpoint today

« P2 back next week

ADMINISTRIVIA

* P3 checkpoint today
« P2 back next week

* Moving onto Graphs by end of lecture today

REVIEW

« Concurrency

- Dealing many things at once, the OS does this
automatically

REVIEW

« Concurrency

« Dealing with many things at once, the OS does this
automatically

 Parallelism

» Breaking a problem down so that multiple pieces can be
done at once

REVIEW

« Concurrency

« Dealing with many things at once, the OS does this
automatically

 Parallelism

» Breaking a problem down so that multiple pieces can be
done at once

* Synchronization

- Making sure that threads don’t interfere with
each other while they're running in parallel

CONCURRENCY

« Not covered in this class

CONCURRENCY

* Not covered in this class
» Largely moderated by the OS

CONCURRENCY

« Not covered in this class

» Largely moderated by the OS

* Ensures that valuable computer resources are
being used as effectively as possible

CONCURRENCY

« Not covered in this class

» Largely moderated by the OS

* Ensures that valuable computer resources are
being used as effectively as possible

* This has consequences in parallelism and
synchronization, but on it's own, it is just about
running objects at the same time

CONCURRENCY

« Not covered in this class

» Largely moderated by the OS
* Ensures that valuable computer resources are
being used as effectively as possible

* This has consequences in parallelism and
synchronization, but on it's own, it is just about
running objects at the same time

« See CSE 333 for more!

PARALLEL REVIEW

 Parallelism in Java works around the
ForkJoin framework

PARALLEL REVIEW

 Parallelism in Java works around the
ForkJoin framework

* You create a pool and parallelize using invoke()

PARALLEL REVIEW

 Parallelism in Java works around the
ForkJoin framework

* You create a pool and parallelize using invoke()

* You must invoke an object of type recursive task,
which must have a constructor and a compute()
function

PARALLEL REVIEW

 Parallelism in Java works around the
ForkJoin framework

* You create a pool and parallelize using invoke()

* You must invoke an object of type recursive task,
which must have a constructor and a compute()
function

* Whenever you call fork() on a RT object, it
begins a new thread and begins work with the
data it's been initialized

PARALLEL REVIEW

 Limitations of ForkJoin

PARALLEL REVIEW

 Limitations of ForkJoin

* Threads only communicate at creation and death

PARALLEL REVIEW

 Limitations of ForkJoin

» Threads only communicate at creation and death
 All input data should be immutable

PARALLEL REVIEW

 Limitations of ForkJoin

» Threads only communicate at creation and death
 All input data should be immutable

PARALLEL REVIEW

 Limitations of ForkJoin

» Threads only communicate at creation and death
 All input data should be immutable
* The threads must all operate on the same code

PARALLEL REVIEW

 Limitations of ForkJoin

Threads only communicate at creation and death
All input data should be immutable
The threads must all operate on the same code

Need to be smart about how threads are created
and destroyed in order to maximize the benefit

PARALLEL REVIEW

 Limitations of ForkJoin

Threads only communicate at creation and death
All input data should be immutable
The threads must all operate on the same code

Need to be smart about how threads are created
and destroyed in order to maximize the benefit

Each thread needs to do some work, there
should never be a “moderating” thread

PARALLEL REVIEW

 Limitations of ForkJoin

Threads only communicate at creation and death
All input data should be immutable
The threads must all operate on the same code

Need to be smart about how threads are created
and destroyed in order to maximize the benefit

Each thread needs to do some work, there
should never be a “moderating” thread

fork(); compute(); join();

PARALLEL REVIEW

« Parallelism takes advantage of having more
than one thing being able to execute at a
time

PARALLEL REVIEW

« Parallelism takes advantage of having more
than one thing being able to execute at a
time

« We analyze asymptotically this using work and span

Work — The input-dependent runtime for sequential
computation

Span — the runtime of a parallelized algorithm given infinite
processors — this will not always be O(1)!

PARALLEL REVIEW

« Parallelism takes advantage of having more
than one thing being able to execute at a
time

« We analyze asymptotically this using work and span

* Work — The input-dependent runtime for sequential
computation

* Span — the runtime of a parallelized algorithm given infinite
processors — this will not always be O(1)!

« Speed up is the amount of time we save given P
pProcessors:

* We can lower bound with: T, = T,/P + T;

* |f we have 4 procesors, and we have speed up of 4,
then we have perfect linear speed up

PARALLEL REVIEW

« Parallelism takes advantage of having more
than one thing being able to execute at a
time

« We analyze asymptotically this using work and span

* Work — The input-dependent runtime for sequential
computation

* Span — the runtime of a parallelized algorithm given infinite
processors — this will not always be O(1)!

« Speed up is the amount of time we save given P
pProcessors:

* We can lower bound with: T, = T,/P + T;

* |f we have 4 procesors, and we have speed up of 4,
then we have perfect linear speed up

PARALLEL REVIEW

« Parallelism takes advantage of having more
than one thing being able to execute at a
time

« We analyze asymptotically this using work and span

* Work — The input-dependent runtime for sequential
computation

* Span — the runtime of a parallelized algorithm given infinite
processors — this will not always be O(1)!

« Speed up is the amount of time we save given P
pProcessors:

* We can lower bound with: T, = T,/P + T;

* |f we have 4 procesors, and we have speed up of 4,
then we have perfect linear speed up

PARALLEL REVIEW

* Analyzing work and span

PARALLEL REVIEW

* Analyzing work and span

« This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

PARALLEL REVIEW

* Analyzing work and span

This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

Some tasks can be parallelized beyond this using the
parallel primitives, so base-cases and constants can be
changed too

PARALLEL REVIEW

* Analyzing work and span

« This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

« Some tasks can be parallelized beyond this using the
parallel primitives, so base-cases and constants can be
changed too

« For example, quicksort’s recurrence is:
T(n) = O(n) + 2T(N/2)

PARALLEL REVIEW

* Analyzing work and span

« This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

« Some tasks can be parallelized beyond this using the
parallel primitives, so base-cases and constants can be
changed too

« For example, quicksort’s recurrence is:
T(n) = O(n) + 2T(N/2)
- But the parallel recurrence is:
T(n) = O(log n) +T(N/2) — we can use a parallel pack!

PARALLEL REVIEW

* Analyzing work and span

This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

Some tasks can be parallelized beyond this using the
parallel primitives, so base-cases and constants can be
changed too

For example, quicksort’s recurrence is:
T(n) = O(n) + 2T(N/2)

But the parallel recurrence is:
T(n) = O(log n) +T(N/2)

This is log? n, which is very fast

PARALLEL REVIEW

 We discussed four primary parallel
primitives

PARALLEL REVIEW

 We discussed four primary parallel
primitives

Reduce — getting a single value from an input array

PARALLEL REVIEW

 We discussed four primary parallel
primitives
« Reduce — getting a single value from an input array

- Map - creating a new array that where elements from the
original array have been mutated by a constant function
(that does not require input from other elements)

PARALLEL REVIEW

 We discussed four primary parallel
primitives
« Reduce — getting a single value from an input array

- Map - creating a new array that where elements from the
original array have been mutated by a constant function
(that does not require input from other elements)

« Scan — Creates a modified array where the result depends
on elements that came before it, (partial sum example)

PARALLEL REVIEW

 We discussed four primary parallel
primitives
« Reduce — getting a single value from an input array

- Map - creating a new array that where elements from the
original array have been mutated by a constant function
(that does not require input from other elements)

« Scan — Creates a modified array where the result depends
on elements that came before it, (partial sum example)

« Pack — Filters an array to produce only elements subject to
a certain condition

PARALLEL REVIEW

« Parallel Primitives

PARALLEL REVIEW

« Parallel Primitives

Easier ways to break down more common problems into
reasonable pieces

PARALLEL REVIEW

« Parallel Primitives

- Easier ways to break down more common problems into
reasonable pieces

- These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you've never seen before

PARALLEL REVIEW

« Parallel Primitives

- Easier ways to break down more common problems into
reasonable pieces

- These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you've never seen before

e Cutoffs

PARALLEL REVIEW

« Parallel Primitives

- Easier ways to break down more common problems into
reasonable pieces

- These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you've never seen before

e Cutoffs

- Creating new threads takes a lot of overhead, at a certain
point, it is faster to do the work sequentially

PARALLEL REVIEW

« Parallel Primitives

- Easier ways to break down more common problems into
reasonable pieces

- These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you've never seen before

« Cutoffs
- Creating new threads takes a lot of overhead, at a certain
point, it is faster to do the work sequentially

- Don’t make unnecessary threads and use divide and
conquer to create new ones.

PARALLEL REVIEW

« Parallel Primitives

- Easier ways to break down more common problems into
reasonable pieces

- These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you've never seen before

« Cutoffs
- Creating new threads takes a lot of overhead, at a certain
point, it is faster to do the work sequentially

- Don’t make unnecessary threads and use divide and
conquer to create new ones.

« Memory hierarchy

PARALLEL REVIEW

« Parallel Primitives

- Easier ways to break down more common problems into
reasonable pieces

- These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you've never seen before

« Cutoffs
- Creating new threads takes a lot of overhead, at a certain
point, it is faster to do the work sequentially

- Don’t make unnecessary threads and use divide and
conquer to create new ones.

« Memory hierarchy

« We didn’t explicitly talk about this, but it does make a
difference

CONCURRENCY

* Not all parallelism falls under the constraint
of the ForkJoin

CONCURRENCY

* Not all parallelism falls under the constraint
of the ForkJoin

« Shared memory can be problematic

CONCURRENCY

* Not all parallelism falls under the constraint
of the ForkJoin

« Shared memory can be problematic

« Race conditions can occur if our output can be made
incorrect by OS scheduling

CONCURRENCY

* Not all parallelism falls under the constraint
of the ForkJoin

« Shared memory can be problematic

« Race conditions can occur if our output can be made
incorrect by OS scheduling

* Need protection from a lock or mutex to ensure that critical
sections are able to ensure mutual exclusion (where mutex
comes from)

CONCURRENCY

* Locking

CONCURRENCY

* Locking

Need to lock resources so that they can be safely
accessed by multiple threads

CONCURRENCY

* Locking

« Need to lock resources so that they can be safely
accessed by multiple threads

- Easy to provide a mutex to lock organized code

CONCURRENCY

* Locking
« Need to lock resources so that they can be safely
accessed by multiple threads

- Easy to provide a mutex to lock organized code

- Java also provides the synchronized framework that allows
you to restrict access to code based on ownership of an
object.

CONCURRENCY

* Locking
« Need to lock resources so that they can be safely
accessed by multiple threads
- Easy to provide a mutex to lock organized code

- Java also provides the synchronized framework that allows
you to restrict access to code based on ownership of an
object.

« Mutex supports two primary functions:

CONCURRENCY

* Locking

« Need to lock resources so that they can be safely
accessed by multiple threads

- Easy to provide a mutex to lock organized code

- Java also provides the synchronized framework that allows
you to restrict access to code based on ownership of an
object.

« Mutex supports two primary functions:

* lock() attempt to monopolize the resource and if it's
unavailable, stall until it is

CONCURRENCY

* Locking

Need to lock resources so that they can be safely
accessed by multiple threads

Easy to provide a mutex to lock organized code

Java also provides the synchronized framework that allows
you to restrict access to code based on ownership of an
object.

Mutex supports two primary functions:

* lock() attempt to monopolize the resource and if it's
unavailable, stall until it is

« unlock() signal that your critical section is complete and
that other threads may use the resource

CONCURRENCY

 Deadlock

CONCURRENCY

 Deadlock

Deadlock occurs when threads need access to multiple
resources to continue

CONCURRENCY

 Deadlock

« Deadlock occurs when threads need access to multiple
resources to continue

* Multiple strategies for solving

CONCURRENCY

 Deadlock

« Deadlock occurs when threads need access to multiple
resources to continue

* Multiple strategies for solving
Random drop and try again

CONCURRENCY

 Deadlock

« Deadlock occurs when threads need access to multiple
resources to continue
« Multiple strategies for solving
 Random drop and try again
* Meta-locks to grab common combinations at once

CONCURRENCY

 Deadlock

« Deadlock occurs when threads need access to multiple
resources to continue
« Multiple strategies for solving
 Random drop and try again
* Meta-locks to grab common combinations at once

* Provide a computation ordering—know which threads are
more important to complete

CONCURRENCY

 Deadlock

« Deadlock occurs when threads need access to multiple
resources to continue
« Multiple strategies for solving
 Random drop and try again
* Meta-locks to grab common combinations at once

* Provide a computation ordering—know which threads are
more important to complete

- Even with this, we can have process starvation if high
priority processes keep reexecuting

CONCURRENCY

 Deadlock

Deadlock occurs when threads need access to multiple
resources to continue
Multiple strategies for solving

 Random drop and try again

* Meta-locks to grab common combinations at once

* Provide a computation ordering—know which threads are

more important to complete

Even with this, we can have process starvation if high
priority processes keep reexecuting

« The OS can usually prevent total starvation, but instituting
a thread hierarchy can be difficult if threads are starting
over with frequency.

CONCURRENCY

« Concurrent design

CONCURRENCY

« Concurrent design

* Avoid data races using the mutex (must recognize when
multiple threads can interleave and interrupt each other)

CONCURRENCY

« Concurrent design

* Avoid data races using the mutex (must recognize when
multiple threads can interleave and interrupt each other)

» Use locks consistently and clearly indicate (in code
comments) what the lock is protecting

CONCURRENCY

« Concurrent design

Avoid data races using the mutex (must recognize when
multiple threads can interleave and interrupt each other)

Use locks consistently and clearly indicate (in code
comments) what the lock is protecting

In general, fewer locks are better, moving to thread specific
or immutable memory may be a way to reduce the need

CONCURRENCY

« Concurrent design

Avoid data races using the mutex (must recognize when
multiple threads can interleave and interrupt each other)

Use locks consistently and clearly indicate (in code
comments) what the lock is protecting

In general, fewer locks are better, moving to thread specific
or immutable memory may be a way to reduce the need

Have a granularity in mind

CONCURRENCY

* Granularity

CONCURRENCY

* Granularity

Fine-grained granularity means that there are more locks
that protect smaller resources

CONCURRENCY

* Granularity

» Fine-grained granularity means that there are more locks
that protect smaller resources

 Allows for more simultaneous access

CONCURRENCY

* Granularity

» Fine-grained granularity means that there are more locks
that protect smaller resources
« Allows for more simultaneous access

* Increases the likelihood that threads need more than one
resource — deadlock

CONCURRENCY

* Granularity

» Fine-grained granularity means that there are more locks
that protect smaller resources

 Allows for more simultaneous access

* Increases the likelihood that threads need more than one
resource — deadlock

« Course-grained granularity
« Simpler implementation

CONCURRENCY

* Granularity

» Fine-grained granularity means that there are more locks
that protect smaller resources

 Allows for more simultaneous access

* Increases the likelihood that threads need more than one
resource — deadlock

« Course-grained granularity
« Simpler implementation

« Less concurrency, lots of threads are always waiting for
the large resource locks, even if they just need a little
piece

CONCURRENCY

 Hash table example

CONCURRENCY

 Hash table example

Do we lock the whole HT or do we only lock the individual
boxes?

CONCURRENCY

 Hash table example

Do we lock the whole HT or do we only lock the individual
boxes?

Individual boxes:

CONCURRENCY

 Hash table example

* Do we lock the whole HT or do we only lock the individual
boxes?
Individual boxes:
Boxes don’t interfere, we can allow more concurrency

CONCURRENCY

 Hash table example

* Do we lock the whole HT or do we only lock the individual
boxes?
* Individual boxes:
* Boxes don't interfere, we can allow more concurrency

« We have more boxes, and more overhead, difficult to
have critical sections that rely on multiple things in the
same HT

CONCURRENCY

 Hash table example

* Do we lock the whole HT or do we only lock the individual
boxes?
* Individual boxes:
* Boxes don't interfere, we can allow more concurrency

« We have more boxes, and more overhead, difficult to
have critical sections that rely on multiple things in the
same HT

* Whole HT

CONCURRENCY

 Hash table example

* Do we lock the whole HT or do we only lock the individual
boxes?
* Individual boxes:
* Boxes don't interfere, we can allow more concurrency

« We have more boxes, and more overhead, difficult to
have critical sections that rely on multiple things in the
same HT

* Whole HT

* Operations are fast, so we may not need much
concurrent access

CONCURRENCY

 Hash table example

* Do we lock the whole HT or do we only lock the individual
boxes?
* Individual boxes:
* Boxes don't interfere, we can allow more concurrency

« We have more boxes, and more overhead, difficult to
have critical sections that rely on multiple things in the
same HT

* Whole HT

* Operations are fast, so we may not need much
concurrent access

* We can allow multiple operations with one lock

CONCURRENCY

 Hash table example

* Do we lock the whole HT or do we only lock the individual
boxes?
* Individual boxes:
* Boxes don't interfere, we can allow more concurrency

« We have more boxes, and more overhead, difficult to
have critical sections that rely on multiple things in the
same HT

* Whole HT

* Operations are fast, so we may not need much
concurrent access

* We can allow multiple operations with one lock
* Resizing!

CONCURRENCY

 Hash table example

* Do we lock the whole HT or do we only lock the individual
boxes?

* |Individual boxes:
* Boxes don't interfere, we can allow more concurrency

« We have more boxes, and more overhead, difficult to
have critical sections that rely on multiple things in the
same HT

* Whole HT

* Operations are fast, so we may not need much
concurrent access

* We can allow multiple operations with one lock
* Resizing!
« Keeping a count of the number of elements

SYNCHRONIZATION

* Tips

SYNCHRONIZATION

* Tips

Keep critical sections as small as possible

SYNCHRONIZATION

* Tips

Keep critical sections as small as possible
Too long and there’s a big performance loss

SYNCHRONIZATION

* Tips

Keep critical sections as small as possible

Too long and there’s a big performance loss
To short, however, and we can introduce race conditions

SYNCHRONIZATION

* Tips

Keep critical sections as small as possible

Too long and there’s a big performance loss
To short, however, and we can introduce race conditions

« Atomicity

SYNCHRONIZATION

* Tips

» Keep critical sections as small as possible
* Too long and there’s a big performance loss
« To short, however, and we can introduce race conditions
« Atomicity
* Which parts of code can’t be interfered with: Identify them
and make sure their resources are properly locked

SYNCHRONIZATION

* Tips

» Keep critical sections as small as possible
* Too long and there’s a big performance loss
« To short, however, and we can introduce race conditions

« Atomicity

* Which parts of code can’t be interfered with: Identify them
and make sure their resources are properly locked

 Use libraries

SYNCHRONIZATION

* Tips

» Keep critical sections as small as possible
* Too long and there’s a big performance loss
« To short, however, and we can introduce race conditions
« Atomicity
* Which parts of code can’t be interfered with: Identify them
and make sure their resources are properly locked

 Use libraries

« ConcurrentHashMap solves a lot of these problems in
ways that will not make immediate sense, but they do a
very good job

WRAP UP

 That ends our discussion on parallelism

WRAP UP

 That ends our discussion on parallelism

* You should be able to parallelize common programs

WRAP UP

 That ends our discussion on parallelism

* You should be able to parallelize common programs

* Analyze how quickly those programs will run using work,
span and speed up

WRAP UP

 That ends our discussion on parallelism

* You should be able to parallelize common programs

* Analyze how quickly those programs will run using work,
span and speed up

* Know the 4 primitives and how to use them

WRAP UP

 That ends our discussion on parallelism

* You should be able to parallelize common programs

* Analyze how quickly those programs will run using work,
span and speed up

* Know the 4 primitives and how to use them

« Understand the constraints and limitations of parallelism
and synchronization

WRAP UP

 That ends our discussion on parallelism

* You should be able to parallelize common programs

* Analyze how quickly those programs will run using work,
span and speed up

* Know the 4 primitives and how to use them

« Understand the constraints and limitations of parallelism
and synchronization

* Locks and mutexes protect critical sections

WRAP UP

 That ends our discussion on parallelism

* You should be able to parallelize common programs

* Analyze how quickly those programs will run using work,
span and speed up

* Know the 4 primitives and how to use them

« Understand the constraints and limitations of parallelism
and synchronization

* Locks and mutexes protect critical sections

» Mutex design is non-trivial. There are many good reasons
to be fine-grained or coarse-grained in your protections.
Think through them all

GRAPHS

* Final big topic

GRAPHS

* Final big topic

« We've talked a lot about data structures and parallelism,
that's the course title, but there is still a lot of introductory
algorithm materia

FRIDAY

« Concurrency and locking
« Concurrent design

* Granularity

 P3 checkpoint

