
CSE 332 
AUGUST 4TH – SYNCHRONIZATION AND 
INTRO TO THE GRAPH 
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•  Parallelism 
•  Breaking a problem down so that multiple pieces can be 

done at once 

•  Synchronization 
•  Making sure that threads don’t interfere with 

each other while they’re running in parallel 
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•  Not covered in this class 

•  Largely moderated by the OS 
•  Ensures that valuable computer resources are 

being used as effectively as possible 
•  This has consequences in parallelism and 

synchronization, but on it’s own, it is just about 
running objects at the same time 

•  See CSE 333 for more! 
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PARALLEL REVIEW 
•  Parallelism in Java works around the 

ForkJoin framework 
•  You create a pool and parallelize using invoke() 
•  You must invoke an object of type recursive task, 

which must have a constructor and a compute() 
function 

•  Whenever you call fork() on a RT object, it 
begins a new thread and begins work with the 
data it’s been initialized 
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•  Limitations of ForkJoin 

•  Threads only communicate at creation and death 
•  All input data should be immutable 
•  The threads must all operate on the same code 
•  Need to be smart about how threads are created 

and destroyed in order to maximize the benefit 
•  Each thread needs to do some work, there 

should never be a “moderating” thread 
•  fork(); compute(); join(); 
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•  Analyzing work and span 

•  This follows along a similar recurrence. Except, when we 
consider 2T(N/2) elements, we can reduce them to T(N/2) 
because we can run both of those smaller tasks in parallel 

•  Some tasks can be parallelized beyond this using the 
parallel primitives, so base-cases and constants can be 
changed too 

•  For example, quicksort’s recurrence is: 
•  T(n) = O(n) + 2T(N/2) 

•  But the parallel recurrence is: 
•  T(n) = O(log n) +T(N/2) 

•  This is log2 n, which is very fast 
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•  Reduce – getting a single value from an input array 
•  Map – creating a new array that where elements from the 

original array have been mutated by a constant function 
(that does not require input from other elements) 

•  Scan – Creates a modified array where the result depends 
on elements that came before it, (partial sum example) 

•  Pack – Filters an array to produce only elements subject to 
a certain condition 
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•  Parallel Primitives 

•  Easier ways to break down more common problems into 
reasonable pieces 

•  These approaches are seen all the time, so be prepared to 
use them to solve and parallelize problem types that 
you’ve never seen before 

•  Cutoffs 

•  Creating new threads takes a lot of overhead, at a certain 
point, it is faster to do the work sequentially 

•  Don’t make unnecessary threads and use divide and 
conquer to create new ones. 

•  Memory hierarchy 

•  We didn’t explicitly talk about this, but it does make a 
difference 
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CONCURRENCY 
•  Not all parallelism falls under the constraint 

of the ForkJoin 
•  Shared memory can be problematic 
•  Race conditions can occur if our output can be made 

incorrect by OS scheduling 
•  Need protection from a lock or mutex to ensure that critical 

sections are able to ensure mutual exclusion (where mutex 
comes from) 
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CONCURRENCY 
•  Locking 

•  Need to lock resources so that they can be safely 
accessed by multiple threads 

•  Easy to provide a mutex to lock organized code 
•  Java also provides the synchronized framework that allows 

you to restrict access to code based on ownership of an 
object. 

•  Mutex supports two primary functions: 
•  lock() attempt to monopolize the resource and if it’s 

unavailable, stall until it is 
•  unlock() signal that your critical section is complete and 

that other threads may use the resource 
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•  Deadlock 

•  Deadlock occurs when threads need access to multiple 
resources to continue 

•  Multiple strategies for solving 
•  Random drop and try again 
•  Meta-locks to grab common combinations at once 
•  Provide a computation ordering—know which threads are 

more important to complete 
•  Even with this, we can have process starvation if high 

priority processes keep reexecuting 
•  The OS can usually prevent total starvation, but instituting 

a thread hierarchy can be difficult if threads are starting 
over with frequency. 
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•  Concurrent design 

•  Avoid data races using the mutex (must recognize when 
multiple threads can interleave and interrupt each other) 

•  Use locks consistently and clearly indicate (in code 
comments) what the lock is protecting 

•  In general, fewer locks are better, moving to thread specific 
or immutable memory may be a way to reduce the need 

•  Have a granularity in mind 
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•  Granularity 

•  Fine-grained granularity means that there are more locks 
that protect smaller resources 

•  Allows for more simultaneous access 
•  Increases the likelihood that threads need more than one 

resource – deadlock 
•  Course-grained granularity 

•  Simpler implementation 
•  Less concurrency, lots of threads are always waiting for 

the large resource locks, even if they just need a little 
piece 

 



CONCURRENCY 
•  Hash table example 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

•  Individual boxes: 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

•  Individual boxes: 
•  Boxes don’t interfere, we can allow more concurrency 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

•  Individual boxes: 
•  Boxes don’t interfere, we can allow more concurrency 
•  We have more boxes, and more overhead, difficult to 

have critical sections that rely on multiple things in the 
same HT 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

•  Individual boxes: 
•  Boxes don’t interfere, we can allow more concurrency 
•  We have more boxes, and more overhead, difficult to 

have critical sections that rely on multiple things in the 
same HT 

•  Whole HT 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

•  Individual boxes: 
•  Boxes don’t interfere, we can allow more concurrency 
•  We have more boxes, and more overhead, difficult to 

have critical sections that rely on multiple things in the 
same HT 

•  Whole HT 
•  Operations are fast, so we may not need much 

concurrent access 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

•  Individual boxes: 
•  Boxes don’t interfere, we can allow more concurrency 
•  We have more boxes, and more overhead, difficult to 

have critical sections that rely on multiple things in the 
same HT 

•  Whole HT 
•  Operations are fast, so we may not need much 

concurrent access 
•  We can allow multiple operations with one lock 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

•  Individual boxes: 
•  Boxes don’t interfere, we can allow more concurrency 
•  We have more boxes, and more overhead, difficult to 

have critical sections that rely on multiple things in the 
same HT 

•  Whole HT 
•  Operations are fast, so we may not need much 

concurrent access 
•  We can allow multiple operations with one lock 
•  Resizing! 

 



CONCURRENCY 
•  Hash table example 

•  Do we lock the whole HT or do we only lock the individual 
boxes? 

•  Individual boxes: 
•  Boxes don’t interfere, we can allow more concurrency 
•  We have more boxes, and more overhead, difficult to 

have critical sections that rely on multiple things in the 
same HT 

•  Whole HT 
•  Operations are fast, so we may not need much 

concurrent access 
•  We can allow multiple operations with one lock 
•  Resizing! 
•  Keeping a count of the number of elements 
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SYNCHRONIZATION 
•  Tips 

•  Keep critical sections as small as possible 
•  Too long and there’s a big performance loss 
•  To short, however, and we can introduce race conditions 

•  Atomicity 
•  Which parts of code can’t be interfered with: Identify them 

and make sure their resources are properly locked 
•  Use libraries 

•  ConcurrentHashMap solves a lot of these problems in 
ways that will not make immediate sense, but they do a 
very good job 
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WRAP UP 
•  That ends our discussion on parallelism 

•  You should be able to parallelize common programs 
•  Analyze how quickly those programs will run using work, 

span and speed up 
•  Know the 4 primitives and how to use them 
•  Understand the constraints and limitations of parallelism 

and synchronization 
•  Locks and mutexes protect critical sections 
•  Mutex design is non-trivial. There are many good reasons 

to be fine-grained or coarse-grained in your protections. 
Think through them all 
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GRAPHS 
•  Final big topic 

•  We’ve talked a lot about data structures and parallelism, 
that’s the course title, but there is still a lot of introductory 
algorithm materia 

 



FRIDAY 
•  Concurrency and locking  
•  Concurrent design 
•  Granularity 
•  P3 checkpoint 


