
CSE 332
AUGUST 4TH – SYNCHRONIZATION AND
INTRO TO THE GRAPH

ADMINISTRIVIA
•  P3 checkpoint today

ADMINISTRIVIA
•  P3 checkpoint today
•  P2 back next week

ADMINISTRIVIA
•  P3 checkpoint today
•  P2 back next week
•  Moving onto Graphs by end of lecture today

REVIEW
•  Concurrency

•  Dealing many things at once, the OS does this
automatically

REVIEW
•  Concurrency

•  Dealing with many things at once, the OS does this
automatically

•  Parallelism
•  Breaking a problem down so that multiple pieces can be

done at once

REVIEW
•  Concurrency

•  Dealing with many things at once, the OS does this
automatically

•  Parallelism
•  Breaking a problem down so that multiple pieces can be

done at once

•  Synchronization
•  Making sure that threads don’t interfere with

each other while they’re running in parallel

CONCURRENCY
•  Not covered in this class

CONCURRENCY
•  Not covered in this class

•  Largely moderated by the OS

CONCURRENCY
•  Not covered in this class

•  Largely moderated by the OS
•  Ensures that valuable computer resources are

being used as effectively as possible

CONCURRENCY
•  Not covered in this class

•  Largely moderated by the OS
•  Ensures that valuable computer resources are

being used as effectively as possible
•  This has consequences in parallelism and

synchronization, but on it’s own, it is just about
running objects at the same time

CONCURRENCY
•  Not covered in this class

•  Largely moderated by the OS
•  Ensures that valuable computer resources are

being used as effectively as possible
•  This has consequences in parallelism and

synchronization, but on it’s own, it is just about
running objects at the same time

•  See CSE 333 for more!

PARALLEL REVIEW
•  Parallelism in Java works around the

ForkJoin framework

PARALLEL REVIEW
•  Parallelism in Java works around the

ForkJoin framework
•  You create a pool and parallelize using invoke()

PARALLEL REVIEW
•  Parallelism in Java works around the

ForkJoin framework
•  You create a pool and parallelize using invoke()
•  You must invoke an object of type recursive task,

which must have a constructor and a compute()
function

PARALLEL REVIEW
•  Parallelism in Java works around the

ForkJoin framework
•  You create a pool and parallelize using invoke()
•  You must invoke an object of type recursive task,

which must have a constructor and a compute()
function

•  Whenever you call fork() on a RT object, it
begins a new thread and begins work with the
data it’s been initialized

PARALLEL REVIEW
•  Limitations of ForkJoin

PARALLEL REVIEW
•  Limitations of ForkJoin

•  Threads only communicate at creation and death

PARALLEL REVIEW
•  Limitations of ForkJoin

•  Threads only communicate at creation and death
•  All input data should be immutable

PARALLEL REVIEW
•  Limitations of ForkJoin

•  Threads only communicate at creation and death
•  All input data should be immutable

PARALLEL REVIEW
•  Limitations of ForkJoin

•  Threads only communicate at creation and death
•  All input data should be immutable
•  The threads must all operate on the same code

PARALLEL REVIEW
•  Limitations of ForkJoin

•  Threads only communicate at creation and death
•  All input data should be immutable
•  The threads must all operate on the same code
•  Need to be smart about how threads are created

and destroyed in order to maximize the benefit

PARALLEL REVIEW
•  Limitations of ForkJoin

•  Threads only communicate at creation and death
•  All input data should be immutable
•  The threads must all operate on the same code
•  Need to be smart about how threads are created

and destroyed in order to maximize the benefit
•  Each thread needs to do some work, there

should never be a “moderating” thread

PARALLEL REVIEW
•  Limitations of ForkJoin

•  Threads only communicate at creation and death
•  All input data should be immutable
•  The threads must all operate on the same code
•  Need to be smart about how threads are created

and destroyed in order to maximize the benefit
•  Each thread needs to do some work, there

should never be a “moderating” thread
•  fork(); compute(); join();

PARALLEL REVIEW
•  Parallelism takes advantage of having more

than one thing being able to execute at a
time

PARALLEL REVIEW
•  Parallelism takes advantage of having more

than one thing being able to execute at a
time
•  We analyze asymptotically this using work and span

•  Work – The input-dependent runtime for sequential
computation

•  Span – the runtime of a parallelized algorithm given infinite
processors – this will not always be O(1)!

PARALLEL REVIEW
•  Parallelism takes advantage of having more

than one thing being able to execute at a
time
•  We analyze asymptotically this using work and span

•  Work – The input-dependent runtime for sequential
computation

•  Span – the runtime of a parallelized algorithm given infinite
processors – this will not always be O(1)!

•  Speed up is the amount of time we save given P
processors:
•  We can lower bound with: Tp = T1/P + Tinf

•  If we have 4 procesors, and we have speed up of 4,
then we have perfect linear speed up

PARALLEL REVIEW
•  Parallelism takes advantage of having more

than one thing being able to execute at a
time
•  We analyze asymptotically this using work and span

•  Work – The input-dependent runtime for sequential
computation

•  Span – the runtime of a parallelized algorithm given infinite
processors – this will not always be O(1)!

•  Speed up is the amount of time we save given P
processors:
•  We can lower bound with: Tp = T1/P + Tinf

•  If we have 4 procesors, and we have speed up of 4,
then we have perfect linear speed up

PARALLEL REVIEW
•  Parallelism takes advantage of having more

than one thing being able to execute at a
time
•  We analyze asymptotically this using work and span

•  Work – The input-dependent runtime for sequential
computation

•  Span – the runtime of a parallelized algorithm given infinite
processors – this will not always be O(1)!

•  Speed up is the amount of time we save given P
processors:
•  We can lower bound with: Tp = T1/P + Tinf

•  If we have 4 procesors, and we have speed up of 4,
then we have perfect linear speed up

PARALLEL REVIEW
•  Analyzing work and span

PARALLEL REVIEW
•  Analyzing work and span

•  This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

PARALLEL REVIEW
•  Analyzing work and span

•  This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

•  Some tasks can be parallelized beyond this using the
parallel primitives, so base-cases and constants can be
changed too

PARALLEL REVIEW
•  Analyzing work and span

•  This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

•  Some tasks can be parallelized beyond this using the
parallel primitives, so base-cases and constants can be
changed too

•  For example, quicksort’s recurrence is:
•  T(n) = O(n) + 2T(N/2)

PARALLEL REVIEW
•  Analyzing work and span

•  This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

•  Some tasks can be parallelized beyond this using the
parallel primitives, so base-cases and constants can be
changed too

•  For example, quicksort’s recurrence is:
•  T(n) = O(n) + 2T(N/2)

•  But the parallel recurrence is:
•  T(n) = O(log n) +T(N/2) – we can use a parallel pack!

PARALLEL REVIEW
•  Analyzing work and span

•  This follows along a similar recurrence. Except, when we
consider 2T(N/2) elements, we can reduce them to T(N/2)
because we can run both of those smaller tasks in parallel

•  Some tasks can be parallelized beyond this using the
parallel primitives, so base-cases and constants can be
changed too

•  For example, quicksort’s recurrence is:
•  T(n) = O(n) + 2T(N/2)

•  But the parallel recurrence is:
•  T(n) = O(log n) +T(N/2)

•  This is log2 n, which is very fast

PARALLEL REVIEW
•  We discussed four primary parallel

primitives

PARALLEL REVIEW
•  We discussed four primary parallel

primitives
•  Reduce – getting a single value from an input array

PARALLEL REVIEW
•  We discussed four primary parallel

primitives
•  Reduce – getting a single value from an input array
•  Map – creating a new array that where elements from the

original array have been mutated by a constant function
(that does not require input from other elements)

PARALLEL REVIEW
•  We discussed four primary parallel

primitives
•  Reduce – getting a single value from an input array
•  Map – creating a new array that where elements from the

original array have been mutated by a constant function
(that does not require input from other elements)

•  Scan – Creates a modified array where the result depends
on elements that came before it, (partial sum example)

PARALLEL REVIEW
•  We discussed four primary parallel

primitives
•  Reduce – getting a single value from an input array
•  Map – creating a new array that where elements from the

original array have been mutated by a constant function
(that does not require input from other elements)

•  Scan – Creates a modified array where the result depends
on elements that came before it, (partial sum example)

•  Pack – Filters an array to produce only elements subject to
a certain condition

PARALLEL REVIEW
•  Parallel Primitives

PARALLEL REVIEW
•  Parallel Primitives

•  Easier ways to break down more common problems into
reasonable pieces

PARALLEL REVIEW
•  Parallel Primitives

•  Easier ways to break down more common problems into
reasonable pieces

•  These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you’ve never seen before

PARALLEL REVIEW
•  Parallel Primitives

•  Easier ways to break down more common problems into
reasonable pieces

•  These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you’ve never seen before

•  Cutoffs

PARALLEL REVIEW
•  Parallel Primitives

•  Easier ways to break down more common problems into
reasonable pieces

•  These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you’ve never seen before

•  Cutoffs

•  Creating new threads takes a lot of overhead, at a certain
point, it is faster to do the work sequentially

PARALLEL REVIEW
•  Parallel Primitives

•  Easier ways to break down more common problems into
reasonable pieces

•  These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you’ve never seen before

•  Cutoffs

•  Creating new threads takes a lot of overhead, at a certain
point, it is faster to do the work sequentially

•  Don’t make unnecessary threads and use divide and
conquer to create new ones.

PARALLEL REVIEW
•  Parallel Primitives

•  Easier ways to break down more common problems into
reasonable pieces

•  These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you’ve never seen before

•  Cutoffs

•  Creating new threads takes a lot of overhead, at a certain
point, it is faster to do the work sequentially

•  Don’t make unnecessary threads and use divide and
conquer to create new ones.

•  Memory hierarchy

PARALLEL REVIEW
•  Parallel Primitives

•  Easier ways to break down more common problems into
reasonable pieces

•  These approaches are seen all the time, so be prepared to
use them to solve and parallelize problem types that
you’ve never seen before

•  Cutoffs

•  Creating new threads takes a lot of overhead, at a certain
point, it is faster to do the work sequentially

•  Don’t make unnecessary threads and use divide and
conquer to create new ones.

•  Memory hierarchy

•  We didn’t explicitly talk about this, but it does make a
difference

CONCURRENCY
•  Not all parallelism falls under the constraint

of the ForkJoin

CONCURRENCY
•  Not all parallelism falls under the constraint

of the ForkJoin
•  Shared memory can be problematic

CONCURRENCY
•  Not all parallelism falls under the constraint

of the ForkJoin
•  Shared memory can be problematic
•  Race conditions can occur if our output can be made

incorrect by OS scheduling

CONCURRENCY
•  Not all parallelism falls under the constraint

of the ForkJoin
•  Shared memory can be problematic
•  Race conditions can occur if our output can be made

incorrect by OS scheduling
•  Need protection from a lock or mutex to ensure that critical

sections are able to ensure mutual exclusion (where mutex
comes from)

CONCURRENCY
•  Locking

CONCURRENCY
•  Locking

•  Need to lock resources so that they can be safely
accessed by multiple threads

CONCURRENCY
•  Locking

•  Need to lock resources so that they can be safely
accessed by multiple threads

•  Easy to provide a mutex to lock organized code

CONCURRENCY
•  Locking

•  Need to lock resources so that they can be safely
accessed by multiple threads

•  Easy to provide a mutex to lock organized code
•  Java also provides the synchronized framework that allows

you to restrict access to code based on ownership of an
object.

CONCURRENCY
•  Locking

•  Need to lock resources so that they can be safely
accessed by multiple threads

•  Easy to provide a mutex to lock organized code
•  Java also provides the synchronized framework that allows

you to restrict access to code based on ownership of an
object.

•  Mutex supports two primary functions:

CONCURRENCY
•  Locking

•  Need to lock resources so that they can be safely
accessed by multiple threads

•  Easy to provide a mutex to lock organized code
•  Java also provides the synchronized framework that allows

you to restrict access to code based on ownership of an
object.

•  Mutex supports two primary functions:
•  lock() attempt to monopolize the resource and if it’s

unavailable, stall until it is

CONCURRENCY
•  Locking

•  Need to lock resources so that they can be safely
accessed by multiple threads

•  Easy to provide a mutex to lock organized code
•  Java also provides the synchronized framework that allows

you to restrict access to code based on ownership of an
object.

•  Mutex supports two primary functions:
•  lock() attempt to monopolize the resource and if it’s

unavailable, stall until it is
•  unlock() signal that your critical section is complete and

that other threads may use the resource

CONCURRENCY
•  Deadlock

CONCURRENCY
•  Deadlock

•  Deadlock occurs when threads need access to multiple
resources to continue

CONCURRENCY
•  Deadlock

•  Deadlock occurs when threads need access to multiple
resources to continue

•  Multiple strategies for solving

CONCURRENCY
•  Deadlock

•  Deadlock occurs when threads need access to multiple
resources to continue

•  Multiple strategies for solving
•  Random drop and try again

CONCURRENCY
•  Deadlock

•  Deadlock occurs when threads need access to multiple
resources to continue

•  Multiple strategies for solving
•  Random drop and try again
•  Meta-locks to grab common combinations at once

CONCURRENCY
•  Deadlock

•  Deadlock occurs when threads need access to multiple
resources to continue

•  Multiple strategies for solving
•  Random drop and try again
•  Meta-locks to grab common combinations at once
•  Provide a computation ordering—know which threads are

more important to complete

CONCURRENCY
•  Deadlock

•  Deadlock occurs when threads need access to multiple
resources to continue

•  Multiple strategies for solving
•  Random drop and try again
•  Meta-locks to grab common combinations at once
•  Provide a computation ordering—know which threads are

more important to complete
•  Even with this, we can have process starvation if high

priority processes keep reexecuting

CONCURRENCY
•  Deadlock

•  Deadlock occurs when threads need access to multiple
resources to continue

•  Multiple strategies for solving
•  Random drop and try again
•  Meta-locks to grab common combinations at once
•  Provide a computation ordering—know which threads are

more important to complete
•  Even with this, we can have process starvation if high

priority processes keep reexecuting
•  The OS can usually prevent total starvation, but instituting

a thread hierarchy can be difficult if threads are starting
over with frequency.

CONCURRENCY
•  Concurrent design

CONCURRENCY
•  Concurrent design

•  Avoid data races using the mutex (must recognize when
multiple threads can interleave and interrupt each other)

CONCURRENCY
•  Concurrent design

•  Avoid data races using the mutex (must recognize when
multiple threads can interleave and interrupt each other)

•  Use locks consistently and clearly indicate (in code
comments) what the lock is protecting

CONCURRENCY
•  Concurrent design

•  Avoid data races using the mutex (must recognize when
multiple threads can interleave and interrupt each other)

•  Use locks consistently and clearly indicate (in code
comments) what the lock is protecting

•  In general, fewer locks are better, moving to thread specific
or immutable memory may be a way to reduce the need

CONCURRENCY
•  Concurrent design

•  Avoid data races using the mutex (must recognize when
multiple threads can interleave and interrupt each other)

•  Use locks consistently and clearly indicate (in code
comments) what the lock is protecting

•  In general, fewer locks are better, moving to thread specific
or immutable memory may be a way to reduce the need

•  Have a granularity in mind

CONCURRENCY
•  Granularity

CONCURRENCY
•  Granularity

•  Fine-grained granularity means that there are more locks
that protect smaller resources

CONCURRENCY
•  Granularity

•  Fine-grained granularity means that there are more locks
that protect smaller resources

•  Allows for more simultaneous access

CONCURRENCY
•  Granularity

•  Fine-grained granularity means that there are more locks
that protect smaller resources

•  Allows for more simultaneous access
•  Increases the likelihood that threads need more than one

resource – deadlock

CONCURRENCY
•  Granularity

•  Fine-grained granularity means that there are more locks
that protect smaller resources

•  Allows for more simultaneous access
•  Increases the likelihood that threads need more than one

resource – deadlock
•  Course-grained granularity

•  Simpler implementation

CONCURRENCY
•  Granularity

•  Fine-grained granularity means that there are more locks
that protect smaller resources

•  Allows for more simultaneous access
•  Increases the likelihood that threads need more than one

resource – deadlock
•  Course-grained granularity

•  Simpler implementation
•  Less concurrency, lots of threads are always waiting for

the large resource locks, even if they just need a little
piece

CONCURRENCY
•  Hash table example

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

•  Individual boxes:

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

•  Individual boxes:
•  Boxes don’t interfere, we can allow more concurrency

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

•  Individual boxes:
•  Boxes don’t interfere, we can allow more concurrency
•  We have more boxes, and more overhead, difficult to

have critical sections that rely on multiple things in the
same HT

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

•  Individual boxes:
•  Boxes don’t interfere, we can allow more concurrency
•  We have more boxes, and more overhead, difficult to

have critical sections that rely on multiple things in the
same HT

•  Whole HT

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

•  Individual boxes:
•  Boxes don’t interfere, we can allow more concurrency
•  We have more boxes, and more overhead, difficult to

have critical sections that rely on multiple things in the
same HT

•  Whole HT
•  Operations are fast, so we may not need much

concurrent access

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

•  Individual boxes:
•  Boxes don’t interfere, we can allow more concurrency
•  We have more boxes, and more overhead, difficult to

have critical sections that rely on multiple things in the
same HT

•  Whole HT
•  Operations are fast, so we may not need much

concurrent access
•  We can allow multiple operations with one lock

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

•  Individual boxes:
•  Boxes don’t interfere, we can allow more concurrency
•  We have more boxes, and more overhead, difficult to

have critical sections that rely on multiple things in the
same HT

•  Whole HT
•  Operations are fast, so we may not need much

concurrent access
•  We can allow multiple operations with one lock
•  Resizing!

CONCURRENCY
•  Hash table example

•  Do we lock the whole HT or do we only lock the individual
boxes?

•  Individual boxes:
•  Boxes don’t interfere, we can allow more concurrency
•  We have more boxes, and more overhead, difficult to

have critical sections that rely on multiple things in the
same HT

•  Whole HT
•  Operations are fast, so we may not need much

concurrent access
•  We can allow multiple operations with one lock
•  Resizing!
•  Keeping a count of the number of elements

SYNCHRONIZATION
•  Tips

SYNCHRONIZATION
•  Tips

•  Keep critical sections as small as possible

SYNCHRONIZATION
•  Tips

•  Keep critical sections as small as possible
•  Too long and there’s a big performance loss

SYNCHRONIZATION
•  Tips

•  Keep critical sections as small as possible
•  Too long and there’s a big performance loss
•  To short, however, and we can introduce race conditions

SYNCHRONIZATION
•  Tips

•  Keep critical sections as small as possible
•  Too long and there’s a big performance loss
•  To short, however, and we can introduce race conditions

•  Atomicity

SYNCHRONIZATION
•  Tips

•  Keep critical sections as small as possible
•  Too long and there’s a big performance loss
•  To short, however, and we can introduce race conditions

•  Atomicity
•  Which parts of code can’t be interfered with: Identify them

and make sure their resources are properly locked

SYNCHRONIZATION
•  Tips

•  Keep critical sections as small as possible
•  Too long and there’s a big performance loss
•  To short, however, and we can introduce race conditions

•  Atomicity
•  Which parts of code can’t be interfered with: Identify them

and make sure their resources are properly locked
•  Use libraries

SYNCHRONIZATION
•  Tips

•  Keep critical sections as small as possible
•  Too long and there’s a big performance loss
•  To short, however, and we can introduce race conditions

•  Atomicity
•  Which parts of code can’t be interfered with: Identify them

and make sure their resources are properly locked
•  Use libraries

•  ConcurrentHashMap solves a lot of these problems in
ways that will not make immediate sense, but they do a
very good job

WRAP UP
•  That ends our discussion on parallelism

WRAP UP
•  That ends our discussion on parallelism

•  You should be able to parallelize common programs

WRAP UP
•  That ends our discussion on parallelism

•  You should be able to parallelize common programs
•  Analyze how quickly those programs will run using work,

span and speed up

WRAP UP
•  That ends our discussion on parallelism

•  You should be able to parallelize common programs
•  Analyze how quickly those programs will run using work,

span and speed up
•  Know the 4 primitives and how to use them

WRAP UP
•  That ends our discussion on parallelism

•  You should be able to parallelize common programs
•  Analyze how quickly those programs will run using work,

span and speed up
•  Know the 4 primitives and how to use them
•  Understand the constraints and limitations of parallelism

and synchronization

WRAP UP
•  That ends our discussion on parallelism

•  You should be able to parallelize common programs
•  Analyze how quickly those programs will run using work,

span and speed up
•  Know the 4 primitives and how to use them
•  Understand the constraints and limitations of parallelism

and synchronization
•  Locks and mutexes protect critical sections

WRAP UP
•  That ends our discussion on parallelism

•  You should be able to parallelize common programs
•  Analyze how quickly those programs will run using work,

span and speed up
•  Know the 4 primitives and how to use them
•  Understand the constraints and limitations of parallelism

and synchronization
•  Locks and mutexes protect critical sections
•  Mutex design is non-trivial. There are many good reasons

to be fine-grained or coarse-grained in your protections.
Think through them all

GRAPHS
•  Final big topic

GRAPHS
•  Final big topic

•  We’ve talked a lot about data structures and parallelism,
that’s the course title, but there is still a lot of introductory
algorithm materia

FRIDAY
•  Concurrency and locking
•  Concurrent design
•  Granularity
•  P3 checkpoint

