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TODAY’S SCHEDULE 
•  Dictionary ADT 
•  Binary Search Trees 
•  Height, Balance and the AVL property 
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DICTIONARY ADT 
•  New abstract data type 

•  Dictionary (aka Map) 
•  Data – Key and Value pairs 

•  Keys: must be comparable, used for lookup 
•  Values: the actual data itself 

•  Example (Store inventory): 
•  Keys: IDs (barcodes) 
•  Values: Product information 
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•  Operations  

•  insert(key, value): inserts the key, value 
pair into the dictionary. Overwrites the value if the 
key is already in the dictionary 

•  find(key): returns the stored value for a 
particular key in the dictionary, returns null if not 
found. 

•  delete(key): removes the key and its 
corresponding value from the dictionary. 
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SET ADT 
•  Slightly different from Dictionary 
•  No values, the set only cares if a key is 

present or not 
•  Find, insert and delete have few differences 
•  Possible to implement other functions from 

sets 
•  Union, intersection, difference 
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APPLICATIONS 
•  Store information in key, value pairs 

•  Very common usage pattern 
•  Phone directories 
•  Indexing 
•  OS page tables 
•  Databases 
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IMPLEMENTATIONS 
•  Important to allow fast operations over the 

keys 
•  Dependent on what the client uses most 
•  Could be many lookups and few inserts 

•  Keys and Values should be stored together 
in some way 
•  Both objects in one node 
•  Paired arrays (one stores keys and the other values) 
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•  Simple implementations 
	  
	  

	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  insert   find    delete 
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Sorted	  linked	  list	  
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*	  Because	  we	  need	  to	  check	  for	  duplicates	  
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O(n)	   O(log	  n)	   O(n)	  



IMPLEMENTATIONS 
•  Other implementations? 



IMPLEMENTATIONS 
•  Other implementations? 

•  Binary Search Tree (BST) 



IMPLEMENTATIONS 
•  Other implementations? 

•  Binary Search Tree (BST) 
•  Sort based on keys (which have to be comparable) 



IMPLEMENTATIONS 
•  Other implementations? 

•  Binary Search Tree (BST) 
•  Sort based on keys (which have to be comparable) 
•  How do we implement this? 



BINARY SEARCH TREE 
•  Review 



BINARY SEARCH TREE 
•  Review 

•  What is a binary search tree? 



BINARY SEARCH TREE 
•  Review 

•  What is a binary search tree? 
•  A rooted tree, where each node has at most two children 



BINARY SEARCH TREE 
•  Review 

•  What is a binary search tree? 
•  A rooted tree, where each node has at most two children 
•  All elements less than the root are in the left subtree and all 

elements larger than the root are in the right subtree 



BINARY SEARCH TREE 
•  Review 

•  What is a binary search tree? 
•  A rooted tree, where each node has at most two children 
•  All elements less than the root are in the left subtree and all 

elements larger than the root are in the right subtree 
•  All, subtrees must also be binary search trees 



BINARY SEARCH TREE 
•  Review 

•  What is a binary search tree? 
•  A rooted tree, where each node has at most two children 
•  All elements less than the root are in the left subtree and all 

elements larger than the root are in the right subtree 
•  All, subtrees must also be binary search trees 

•  With this property, all binary search trees have sorted in-order 
traversals 



IMPLEMENTATIONS 
•  Other implementations? 

•  Binary Search Tree (BST) 
•  Sort based on keys (which have to be comparable) 
•  How do we implement this? 
•  What changes need to be made? 
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•  BST Node: 

•  Before: 
•  Node left 
•  Node right 
•  Value data 

•  Now? 
•  Node left 
•  Node right 
•  Key k 
•  Value v 
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IMPLEMENTATIONS 
•  BST Changes: 

•  Insert() and find() remain similar 
•  Key is the primary comparison 
•  Value is attached to the key 
•  Dictionary fact: All values have an associated key 
•  For now, assume all keys are unique, i.e. each key 

only has one value 
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IMPLEMENTATIONS 
•  BST Analysis: 

•  What is our time for the three functions? 
•  Insert()? Delete()? Find()? 
•  Take 5 minutes to discuss 
•  Consider best and worst-case. 
•  What are the inputs for best and worst-case? 
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IMPLEMENTATIONS 
•  BST Analysis: 

•  Insert(): 
•  Worst case: O(n) 
•  Best case: O(log n) 
•  What is the general case here? 

•  What does the runtime for a particular insert 
depend on? 

•  O(height) 
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HEIGHT REVIEW 
•  Height 

•  In this class, we set the height of an empty tree to 
be equal to -1 

•  This makes the height of a single node 0 
•  How do you calculate the height of a large tree? 

•  Height = 1 + max(height(left),height(right)) 
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IMPLEMENTATIONS 
•  BST Analysis: 

•  Find(): 
•  Worst-case: O(n)  
•  What is this case? When the tree is linear 
•  Best-case: O(1) When the item is the root 
•  Generally, however: O(log n) when the tree is 

balanced 
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IMPLEMENTATIONS 
•  BST Analysis: 

•  Delete(): 
•  What are some strategies for deleting? 
•  Are there any cases where deleting is easy? 
•  Case 0: The element is not in the data structure 

•  Don’t change the data, possibly throw an exception 
•  Case 1: The key is a leaf in the tree 

•  Remove the pointer to that node 
•  Case 2: The node has one child 

•  Replace that node with its child 
•  Case 3: The node has two children 

•  What are some possible strategies? 
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IMPLEMENTATIONS 
•  Deleting nodes with 2 children 

•  How do we delete 12? 
•  Can we replace 12 with one of it’s children? 
•  Need to find candidate to replace 12 
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IMPLEMENTATIONS 
•  Deleting nodes with 2 children 

•  If a node has 2 children, then we can “delete” it by over 
writing the node with a different <key, value> pair 

•  In order to avoid changing the shape and doing too much 
work, it must be either the predecessor (the element just 
before it in sorted order) or the successor (the element just 
after it in sorted order) 
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•  What are the predecessor and successor of 12? 
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IMPLEMENTATIONS 
•  BST Analysis: 

•  Delete(): 
•  Worst case(): O(n), finding the predecessor/successor 

takes time. What is this case? 
•  Best case(): O(1) if we’re deleting the root from a 

degenerate tree 
•  “Degenerate” trees are those that are very 

unbalanced. 



ANALYSIS 
•  Height 



ANALYSIS 
•  Height 

•  Many of our worst cases are when trees are poorly balanced 



ANALYSIS 
•  Height 

•  Many of our worst cases are when trees are poorly balanced 
•  Can we enforce this balance? 



ANALYSIS 
•  Height 

•  Many of our worst cases are when trees are poorly balanced 
•  Can we enforce this balance? 
•  What are some possible balance conditions? 



ANALYSIS 
•  Height 

•  Many of our worst cases are when trees are poorly balanced 
•  Can we enforce this balance? 
•  What are some possible balance conditions? 

•  Number of elements on the left = number on right? 



ANALYSIS 
•  Height 

•  Many of our worst cases are when trees are poorly balanced 
•  Can we enforce this balance? 
•  What are some possible balance conditions? 

•  Number of elements on the left = number on right? 
•  What we really care about though is the height of the tree 



ANALYSIS 
•  Height 

•  Many of our worst cases are when trees are poorly balanced 
•  Can we enforce this balance? 
•  What are some possible balance conditions? 

•  Number of elements on the left = number on right? 
•  What we really care about though is the height of the tree 
•  Height of the left = height on the right? 
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ANALYSIS 
•  This doesn’t help much 

•  Need the definition to be recursive 
•  Let height(left) = height(right) for all nodes 
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ANALYSIS 
•  Now what’s wrong? 

•  Only perfect trees (with 2k children) can exist 
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ANALYSIS 
•  For each node in the tree, the height of its left 

and right subtrees can differ by at most one 
•  |(height(left) – height(right)| < 1 
•  This is the AVL property, and we can use it to 

create self balancing trees 



NEXT CLASS 
•  AVL Trees and implementation 


