CSE 332

 JULY 7 ${ }^{\text {TH }}$ - B-TREES
ASSORTED MINUTIAE

- P2 out tonight

ASSORTED MINUTIAE

- P2 out tonight
- I will make partners on Monday morning for any students who have not selected theirs

ASSORTED MINUTIAE

- P2 out tonight
- I will make partners on Monday morning for any students who have not selected theirs
- Exam review
- Next Thursday at 3:30 in CSE 403

HARDWARE CONSTRAINTS

- So far, we've taken for granted that memory access in the computer is constant and easily accessible

HARDWARE CONSTRAINTS

- So far, we've taken for granted that memory access in the computer is constant and easily accessible
- This isn't always true!

HARDWARE CONSTRAINTS

- So far, we've taken for granted that memory access in the computer is constant and easily accessible
- This isn't always true!
- At any given time, some memory might be cheaper and easier to access than others

HARDWARE CONSTRAINTS

- So far, we've taken for granted that memory access in the computer is constant and easily accessible
- This isn't always true!
- At any given time, some memory might be cheaper and easier to access than others
- Memory can't always be accessed easily

HARDWARE CONSTRAINTS

- So far, we've taken for granted that memory access in the computer is constant and easily accessible
- This isn't always true!
- At any given time, some memory might be cheaper and easier to access than others
- Memory can't always be accessed easily
- Sometimes the OS lies, and says an object is "in memory" when it's actually on the disk

HARDWARE CONSTRAINTS

- Back on 32-bit machines, each program had access to 4GB of memory

HARDWARE CONSTRAINTS

- Back on 32-bit machines, each program had access to 4GB of memory
- This isn't feasible to provide!

HARDWARE CONSTRAINTS

- Back on 32-bit machines, each program had access to 4GB of memory
- This isn't feasible to provide!
- Sometimes there isn't enough available, and so memory that hasn't been used in a while gets pushed to the disk

HARDWARE CONSTRAINTS

- Back on 32-bit machines, each program had access to 4GB of memory
- This isn't feasible to provide!
- Sometimes there isn't enough available, and so memory that hasn't been used in a while gets pushed to the disk
- Memory that is frequently accessed goes to the cache, which is even faster than RAM

The Memory Mountain

LOCALITY AND PAGES

- Secondly, the OS uses temporal locality,
- Memory recently accessed is likely to be accessed again
- Bring recently used data into faster memory
- Types of memory (by speed)
- Register
- L1,L2,L3
- Memory
- Disk
- The interwebs (the cloud)

LOCALITY AND PAGES

- The OS is always processing this information and deciding which is the best
- This is why arrays are faster in practice, they are always next to each other in memory

LOCALITY AND PAGES

- The OS is always processing this information and deciding which is the best
- This is why arrays are faster in practice, they are always next to each other in memory
- Each new node in a tree may not even be in the same page in memory!!

LOCALITY AND PAGES

- The OS is always processing this information and deciding which is the best
- This is why arrays are faster in practice, they are always next to each other in memory
- Each new node in a tree may not even be in the same page in memory!!
- Important to consider when designing and explaining design problems.

COST OF MEMORY ACCESSES

- Registers (128B): Instantaneous access
- L2 Cache (128KB): 0.5 nanoseconds
- L3 Cache (2MB): 7 nanoseconds
- Main Memory (32 GB): 100 nanoseconds

COST OF MEMORY ACCESSES

- Registers (128B): Instantaneous access
- L2 Cache (128KB): 0.5 nanoseconds
- L3 Cache (2MB): 7 nanoseconds
- Main Memory (32 GB): 100 nanoseconds
- Disk (TBs): 8,000,000 nanoseconds

COST OF MEMORY ACCESSES

- Registers (128B): Instantaneous access
- L2 Cache (128KB): 0.5 nanoseconds
- L3 Cache (2MB): 7 nanoseconds
- Main Memory (32 GB): 100 nanoseconds
- Disk (TBs): 8,000,000 nanoseconds
- This is much, much worse

LARGE AVL

- Suppose we are storing terabytes of data in an AVL tree

LARGE AVL

- Suppose we are storing terabytes of data in an AVL tree
- Height is about 50

LARGE AVL

- Suppose we are storing terabytes of data in an AVL tree
- Height is about 50
- How many disk accesses will a find take?

LARGE AVL

- Suppose we are storing terabytes of data in an AVL tree
- Height is about 50
- How many disk accesses will a find take?
- Between 0 and 50!

LARGE AVL

- Suppose we are storing terabytes of data in an AVL tree
- Height is about 50
- How many disk accesses will a find take?
- Between 0 and 50!
- This is the difference between nanoseconds and almost half a second!

LARGE AVL

- Suppose we are storing terabytes of data in an AVL tree
- Height is about 50
- How many disk accesses will a find take?
- Between 0 and 50!
- This is the difference between nanoseconds and almost half a second!
- If lots data is stored on the disk, O(log n) finds don't happen in practice

PROBLEMS

- Why is AVL so bad on disk?

PROBLEMS

- Why is AVL so bad on disk?
- Each piece of data is its own node

PROBLEMS

- Why is AVL so bad on disk?
- Each piece of data is its own node
- Each call of new may not place objects next to each other

PROBLEMS

- Why is AVL so bad on disk?
- Each piece of data is its own node
- Each call of new may not place objects next to each other
- Has large height, for the number of elements?

SOLUTIONS

- What changes might we want to make to an AVL to make it better for disk?

SOLUTIONS

- What changes might we want to make to an AVL to make it better for disk?
- Still want to keep log n height

SOLUTIONS

- What changes might we want to make to an AVL to make it better for disk?
- Still want to keep log n height
- Allocate more objects closer together

SOLUTIONS

- What changes might we want to make to an AVL to make it better for disk?
- Still want to keep log n height
- Allocate more objects closer together
- Have a higher branching factor so that data you want is at a lower depth

SOLUTIONS

- What changes might we want to make to an AVL to make it better for disk?
- Still want to keep log n height
- Allocate more objects closer together
- Have a higher branching factor so that data you want is at a lower depth
- Take advantage of page sizes

B-TREE

- Noded data structure

B-TREE

- Noded data structure
- Two types of nodes:
- internal "signpost" nodes
- leaf "data" nodes
- Each node has a capacity
- M for "signpost" nodes
- L for "leaf/data" nodes

B-TREE

- Rules
- Other than the root, internal nodes have between $M / 2$ and M children and leaves have between L/2 and L data

B-TREE

- Rules
- Other than the root, internal nodes have between $M / 2$ and M children and leaves have between $L / 2$ and L data
- Elements in the leaves are stored in sorted order

B-TREE

- Rules
- Other than the root, internal nodes have between $M / 2$ and M children and leaves have between L/2 and L data
- Elements in the leaves are stored in sorted order
- The number of subtrees for a signpost is one more than the number of elements in the signpost

B-TREE

- Rules
- Other than the root, internal nodes have between $M / 2$ and M children and leaves have between L/2 and L data
- Elements in the leaves are stored in sorted order
- The number of subtrees for a signpost is one more than the number of elements in the signpost
- The signpost has the smallest piece of data to the right of it - all data is in a leaf

B-TREE

- Example

B-TREE

- Find

B-TREE

- Find
- Find the correct subnode at every signpost
- $\mathrm{O}\left(\log _{2} \mathrm{M}\right)$

B-TREE

- Find
- Find the correct subnode at every signpost
- $\mathrm{O}\left(\log _{2} \mathrm{M}\right)$
- Go through the depth of the tree
- $\mathrm{O}\left(\log _{\mathrm{M}} \mathrm{N}\right)$

B-TREE

- Find
- Find the correct subnode at every signpost
- $\mathrm{O}\left(\log _{2} \mathrm{M}\right)$
- Go through the depth of the tree
- $\mathrm{O}\left(\log _{\mathrm{M}} \mathrm{N}\right)$
- Find the object in the leaf
- $\mathrm{O}\left(\log _{2} \mathrm{~L}\right)$

B-TREE

- Find
- Find the correct subnode at every signpost
- $\mathrm{O}\left(\log _{2} \mathrm{M}\right)$
- Go through the depth of the tree
- $\mathrm{O}\left(\log _{\mathrm{M}} \mathrm{N}\right)$
- Find the object in the leaf
- $\mathrm{O}\left(\log _{2} \mathrm{~L}\right)$
- Total find $=\mathrm{O}\left(\log _{2} \mathrm{~L}+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$

B-TREE

- Insertion
- Insert into the correct leaf (in sorted order)

B-TREE

- Insertion
- Insert into the correct leaf (in sorted order)
- If the leaf overflows
- split into two

B-TREE

- Insertion
- Insert into the correct leaf (in sorted order)
- If the leaf overflows
- split into two
- attach new child to parent
- add new key to parent

B-TREE

- Insertion
- Insert into the correct leaf (in sorted order)
- If the leaf overflows
- split into two
- attach new child to parent
- add new key to parent
- Recursively overflow as necessary

B-TREE

- Insertion
- Insert into the correct leaf (in sorted order)
- If the leaf overflows
- split into two
- attach new child to parent
- add new key to parent
- Recursively overflow as necessary
- If the root overflows, make a new root

B-TREE

- Insertion
- Find the correct leaf $O\left(\log _{2} L+\log _{2} M * \log _{M} N\right)$

B-TREE

- Insertion
- Find the correct leaf $O\left(\log _{2} L+\log _{2} M^{*} \log _{M} \mathrm{~N}\right)$
- Insert in the leaf

B-TREE

- Insertion
- Find the correct leaf $\mathrm{O}\left(\log _{2} \mathrm{~L}+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$
- Insert in the leaf $\mathrm{O}(\mathrm{L})$

B-TREE

- Insertion
- Find the correct leaf $\mathrm{O}\left(\log _{2} \mathrm{~L}+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$
- Insert in the leaf $O(L)$
- Split the leaf $O(\mathrm{~L})$

B-TREE

- Insertion
- Find the correct leaf $\mathrm{O}\left(\log _{2} \mathrm{~L}+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$
- Insert in the leaf $\mathrm{O}(\mathrm{L})$
- Split the leaf O(L)
- Split parents back to the root:

B-TREE

- Insertion
- Find the correct leaf $\mathrm{O}\left(\log _{2} \mathrm{~L}+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$
- Insert in the leaf $O(L)$
- Split the leaf O(L)
- Split parents back to the root: $O\left(M \log _{M} n\right)$

B-TREE

- Insertion
- Find the correct leaf $\mathrm{O}\left(\log _{2} \mathrm{~L}+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$
- Insert in the leaf $O(L)$
- Split the leaf O(L)
- Split parents back to the root: $\mathrm{O}\left(\mathrm{M} \log _{\mathrm{M}} \mathrm{n}\right)$
- Total runtime $=O\left(L+M \log _{M} n\right)$

B-TREE

- Insertion
- Find the correct leaf $\mathrm{O}\left(\log _{2} \mathrm{~L}+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$
- Insert in the leaf $O(L)$
- Split the leaf $O(\mathrm{~L})$
- Split parents back to the root: $\mathrm{O}\left(\mathrm{M} \log _{\mathrm{M}} \mathrm{n}\right)$
- Total runtime $=O\left(\mathrm{~L}+\mathrm{M} \log _{\mathrm{M}} \mathrm{n}\right)$
- Splitting is actually fairly uncommon

B-TREE

- Insertion
- Find the correct leaf $\mathrm{O}\left(\log _{2} \mathrm{~L}+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$
- Insert in the leaf $O(L)$
- Split the leaf O(L)
- Split parents back to the root: $\mathrm{O}\left(\mathrm{M} \log _{\mathrm{M}} \mathrm{n}\right)$
- Total runtime $=\mathrm{O}\left(\mathrm{L}+\mathrm{M} \log _{\mathrm{M}} \mathrm{n}\right)$
- Splitting is actually fairly uncommon
- Care most about \# of disc accesses
- $\log _{M} n$

B-TREE

- Deletion

B-TREE

- Deletion
- Remove the data from the correct leaf

B-TREE

- Deletion
- Remove the data from the correct leaf
- If the leaf has too few elements,

B-TREE

- Deletion
- Remove the data from the correct leaf
- If the leaf has too few elements,
- Adopt one from a neighbor (if it doesn't result in an underflow)

B-TREE

- Deletion
- Remove the data from the correct leaf
- If the leaf has too few elements,
- Adopt one from a neighbor (if it doesn't result in an underflow)
- Otherwise, merge with the neighbor

B-TREE

- Deletion
- Remove the data from the correct leaf
- If the leaf has too few elements,
- Adopt one from a neighbor (if it doesn't result in an underflow)
- Otherwise, merge with the neighbor
- Recursively underflow up to root if necessary

B-TREE

- Deletion
- Find the correct element: $O\left(\log _{2} L+\log _{2} M^{*} \log _{M} N\right)$
- Remove from the leaf: $\mathrm{O}(\mathrm{L})$

B-TREE

- Deletion
- Find the correct element: $O\left(\log _{2} L+\log _{2} \mathrm{M}^{*} \log _{\mathrm{M}} \mathrm{N}\right)$
- Remove from the leaf: O(L)
- Adopt/merge with neighbor: O(L)

B-TREE

- Deletion
- Find the correct element: $O\left(\log _{2} L+\log _{2} M^{*} \log _{M} N\right)$
- Remove from the leaf: O(L)
- Adopt/merge with neighbor: $\mathrm{O}(\mathrm{L})$
- Merge back up to root: $O\left(M \log _{m} n\right)$

B-TREE

- Deletion
- Find the correct element: $O\left(\log _{2} L+\log _{2} M^{*} \log _{M} N\right)$
- Remove from the leaf: O(L)
- Adopt/merge with neighbor: $\mathrm{O}(\mathrm{L})$
- Merge back up to root: $O\left(M \log _{m} n\right)$
- Total time: $O\left(L+M \log _{m} n\right)$

B-TREE

- Practice tool here:
- https://www.cs.usfca.edu/~galles/ visualization/BPlusTree.html

B-TREE

- Why bother with the B-tree?

B-TREE

- Why bother with the B-tree?
- Many keys stored in each signpost

B-TREE

- Why bother with the B-tree?
- Many keys stored in each signpost
- Each can be brought up in one disk access

B-TREE

- Why bother with the B-tree?
- Many keys stored in each signpost
- Each can be brought up in one disk access
- Binary search is fast because it's all in memory

B-TREE

- Why bother with the B-tree?
- Many keys stored in each signpost
- Each can be brought up in one disk access
- Binary search is fast because it's all in memory
- Internal nodes have only the keys (values waste space)

B-TREE

- Why bother with the B-tree?
- Many keys stored in each signpost
- Each can be brought up in one disk access
- Binary search is fast because it's all in memory
- Internal nodes have only the keys (values waste space)
- What values of M and L do we want?

B-TREE

- Why bother with the B-tree?
- Many keys stored in each signpost
- Each can be brought up in one disk access
- Binary search is fast because it's all in memory
- Internal nodes have only the keys (values waste space)
- What values of M and L do we want?
- Want each node to be one page

B-TREE

- Choosing M and L

B-TREE

- Choosing M and L
- Let a page be p bytes
- Keys are k bytes
- Pointers are t bytes
- Values are v bytes
- $p=M^{*} p+M-1^{*} k ; M=p+k / t+k$
- $L=(p-t) /(k+v)$

B-TREE

- Conclusion

B-TREE

- Conclusion
- Good data structure for working with and understanding memory and the disk

B-TREE

- Conclusion
- Good data structure for working with and understanding memory and the disk
- More complicated analysis, but comes after recognizing that bigO assumes equal memory access

B-TREE

- Conclusion
- Good data structure for working with and understanding memory and the disk
- More complicated analysis, but comes after recognizing that bigO assumes equal memory access
- Computer architecture constraints have realworld impacts that can be corrected for

B-TREE

- Conclusion
- Good data structure for working with and understanding memory and the disk
- More complicated analysis, but comes after recognizing that bigO assumes equal memory access
- Computer architecture constraints have realworld impacts that can be corrected for
- Theory is great, but it has its limitations

NEXT WEEK

- Hash tables

NEXT WEEK

- Hash tables
- Collision resolution

NEXT WEEK

- Hash tables
- Collision resolution
- Midterm exam

