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•  P1 due at 11:30 PM tonight 
•  EX05 due at 11:30 PM 
•  EX06 on AVL trees, out tonight 
•  Exam next Friday 

•  Review in section Thursday 
•  Good review times? 
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TODAY’S LECTURE 
•  AVL Trees 

•  Balance 
•  Implementation 

•  Memory analysis 
•  Will discuss after AVL on Friday 
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•  AVL Trees 

•  BST trees with AVL property 
•  Abs(height(left) – height(right)) <= 1 
•  Heights of subtrees can differ by at most 

one 
•  This property must be preserved 

throughout the tree 
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•  Is this an AVL Tree? 
•  No, AVL trees must still maintain Binary Search 
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•  Insert(key k, value v): 

•  Insert the key value pair into the dictionary 
•  Verify that balance is maintained 
•  If not, correct the tree 

•  How do we correct the tree? 
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AVL “ROTATION” 
•  To correct this case: 

•  B must become the root 
•  We rotate B to the root position 
•  A becomes the left child of B 
•  This is called the “left rotation” 
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AVL “ROTATION” 
•  These are the “single” rotations 

•  In general, this rotation occurs when an 
addition is made to the right-right or left-left 
grandchild 

•  The balance might not be off on the 
parent! An insert might upset balance up 
the tree 
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AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 

•  Adding A, puts C out 
of balance 

•  Rotate B up and pass 
the Y subtree to C 

•  Perform this rotation at the lowest point 
of imbalance 
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SINGLE ROTATION EXAMPLE 

•  Add 16 to the tree 
•  Is it unbalanced now? Where? 22 
•  Also at 15, but we choose the lowest point 
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SINGLE ROTATION EXAMPLE 

•  Perform the rotation around 22 
•  What rotation takes place? 
•  What is the resulting tree? 
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SINGLE ROTATION EXAMPLE 

•  19 must move up to where 22 was 
•  20 changes parents 
•  Balances are recomputed throughout the tree 
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•  These two rotations (right-right and left-

left) are symmetric and can be solved the 
same way 
•  Named by the location of the added node 

relative to the unbalanced node 
•  What are the other two cases? 
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•  Right left case 

•  Again, A is out of balance 
•  This time, the addition (B) 

comes between A and C 
•  In this case, the grandchild 

must become the root. 
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AVL “ROTATION” 
•  Identifying what should 

be the new root is key 
•  Imagine “lifting” up the root 
•  Where will the children have 

to go to maintain the search 
property? 
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AVL “ROTATION” 
•  This is for your reference later.  
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•  Let’s do an example. Insert(13) 
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•  What must be the new root? Why? 
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•  What does the new tree look like? 
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AVL “ROTATION” 

•  The replaced root is always a child of the 
new root! 
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AVL HEIGHT (PROOF) 
•  You do not need to memorize this proof, 

but it is interesting to think about 
•  Let’s consider the most “unbalanced” AVL 

tree, that is: the tree for each height that has 
the fewest nodes 
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•  What about for height three? What tree 

has the fewest number of nodes? 
•  Hint: balance will probably not be zero 

 
 
There are multiple of these trees, but what’s 
special about it? 
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AVL HEIGHT (PROOF) 
•  In general then, if N1 = 1 and N2 = 2 and  

 N3 = 4, what is Nk? 
•  Nk = 1 + Nk-1 + Nk-2 

Because the smallest AVL tree is a node (1) 
with a child that is the smallest AVL tree of 
height k-1 (Nk-1) and the other child is the 
smallest AVL tree of height k-2 (Nk-2). 

•  This means every non-leaf has balance 1 
•  Nothing in the tree is perfectly balanced. 
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Nk = 1 + Nk-1 + Nk-2  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AVL HEIGHT (PROOF) 
1 + Nk-3 must be greater than zero 

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"
Nk = 1 + (1 + Nk-2 + Nk-3) + Nk-2"
Nk = 1 + 2Nk-2 + Nk-3"
Nk > 2Nk-2"
This means the tree doubles in size after every 
two height (compared to a perfect tree which 
doubles with every added height) 
 "

"



AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 



AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 
•  Insert(key k, value v) 
•  Find(key k) 



AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 
•  Insert(key k, value v) 
•  Find(key k) 
•  Delete(key k) 



AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 
•  Insert(key k, value v) 
•  Find(key k) : O(height) = O(log n) 
•  Delete(key k) 



AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 
•  Insert(key k, value v) = O(log n) + balancing 
•  Find(key k) : O(height) = O(log n) 
•  Delete(key k) 



AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 
•  Insert(key k, value v) = O(log n) + balancing 
•  Find(key k) : O(height) = O(log n) 
•  Delete(key k): O(log n) + balancing(?) 

•  How long does it take to perform a balance? 



AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 
•  Insert(key k, value v) = O(log n) + balancing 
•  Find(key k) : O(height) = O(log n) 
•  Delete(key k): O(log n) + balancing(?) 

•  How long does it take to perform a balance? 
•  There are at most three nodes and four 

subtrees to move around.  



AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 
•  Insert(key k, value v) = O(log n) + balancing 
•  Find(key k) : O(height) = O(log n) 
•  Delete(key k): O(log n) + balancing(?) 

•  How long does it take to perform a balance? 
•  There are at most three nodes and four 

subtrees to move around. O(1) 
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AVL CONCLUSION 
•  By using AVL rotations, we can keep the 

tree balanced 
•  An AVL tree has O(log n) height 
•  This does not come at an increased 

asymptotic runtime for insert. 
•  Rotations take a constant time. 
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NEXT CLASS 
•  B-Trees 

•  Memory analysis 
•  Computer architecture constraints 


