CSE 332

JULY 5TH - AVL TREES

ASSORTED MINUTIAE

- P1 due at 11:30 PM tonight

ASSORTED MINUTIAE

- P1 due at 11:30 PM tonight
- EX05 due at 11:30 PM

ASSORTED MINUTIAE

- P1 due at 11:30 PM tonight
- EX05 due at 11:30 PM
- EX06 on AVL trees, out tonight

ASSORTED MINUTIAE

- P1 due at 11:30 PM tonight
- EX05 due at 11:30 PM
- EX06 on AVL trees, out tonight
- Exam next Friday

ASSORTED MINUTIAE

- P1 due at 11:30 PM tonight
- EX05 due at 11:30 PM
- EX06 on AVL trees, out tonight
- Exam next Friday
- Review in section Thursday

ASSORTED MINUTIAE

- P1 due at 11:30 PM tonight
- EX05 due at 11:30 PM
- EX06 on AVL trees, out tonight
- Exam next Friday
- Review in section Thursday
- Good review times?

TODAY'S LECTURE

- AVL Trees
- Balance
- Implementation

TODAY'S LECTURE

- AVL Trees
- Balance
- Implementation
- Memory analysis
- Will discuss after AVL on Friday

REVIEW

- AVL Trees

REVIEW

- AVL Trees
- BST trees with AVL property

REVIEW

- AVL Trees
- BST trees with AVL property
- Abs(height(left) - height(right)) <= 1

REVIEW

- AVL Trees
- BST trees with AVL property
- Abs(height(left) - height(right)) <= 1
- Heights of subtrees can differ by at most one

REVIEW

- AVL Trees
- BST trees with AVL property
- Abs(height(left) - height(right)) <= 1
- Heights of subtrees can differ by at most one
- This property must be preserved throughout the tree

REVIEW

REVIEW

- Calculate balance for each node

REVIEW

- Calculate balance for each node

REVIEW

- Calculate balance for each node

REVIEW

REVIEW

REVIEW

- Is this an AVL Tree?

REVIEW

- Is this an AVL Tree?
- No, AVL trees must still maintain Binary Search

AVL OPERATIONS

- Since AVL trees are also BST trees, they should support the same functionality

AVL OPERATIONS

- Since AVL trees are also BST trees, they should support the same functionality
- Insert(key k, value v)
- Find(key k)
- Delete(key k)

AVL OPERATIONS

- Since AVL trees are also BST trees, they should support the same functionality
- Insert(key k, value v)
- Find(key k): Same as BST!
- Delete(key k)

AVL OPERATIONS

- Since AVL trees are also BST trees, they should support the same functionality
- Insert(key k, value v)
- Find(key k): Same as BST!
- Delete(key k):

AVL OPERATIONS

- Since AVL trees are also BST trees, they should support the same functionality
- Insert(key k, value v)
- Find(key k): Same as BST!
- Delete(key k)
- For insert, we should maintain AVL property as we build

AVL OPERATIONS

- Since AVL trees are also BST trees, they should support the same functionality
- Insert(key k, value v)
- Find(key k): Same as BST!
- Delete(key k):
- For insert, we should maintain AVL property as we build

AVL OPERATIONS

- Insert(key k, value v):

AVL OPERATIONS

- Insert(key k, value v):
- Insert the key value pair into the dictionary

AVL OPERATIONS

- Insert(key k, value v):
- Insert the key value pair into the dictionary
- Verify that balance is maintained

AVL OPERATIONS

- Insert(key k, value v):
- Insert the key value pair into the dictionary
- Verify that balance is maintained
- If not, correct the tree

AVL OPERATIONS

- Insert(key k, value v):
- Insert the key value pair into the dictionary
- Verify that balance is maintained
- If not, correct the tree
- How do we correct the tree?

AVL INSERT

- Start with the single root

AVL INSERT

- Add 7 to the tree

AVL INSERT

- Add 7 to the tree. Is balance preserved?

AVL INSERT

- Add 7 to the tree. Is balance preserved?
- Yes

AVL INSERT

- Add 9 to the tree

AVL INSERT

- Add 9 to the tree. Is balance preserved?

AVL INSERT

- Add 9 to the tree. Is balance preserved?
- No.

AVL INSERT

- How do we correct this imbalance?

AVL INSERT

- How do we correct this imbalance?
- Important to preserve binary search

AVL INSERT

- How do we correct this imbalance?
- Important to preserve binary search

AVL INSERT

- What shape do we want?

AVL INSERT

- What shape do we want?

AVL INSERT

- What shape do we want?
- What then do we have as the root?

AVL INSERT

- Since 7 must be the root, we "rotate" that node into position.

AVL "ROTATION"

- To correct this case:
- B must become the root

AVL "ROTATION"

- To correct this case:
- B must become the root
- We rotate B to the root position

AVL "ROTATION"

- To correct this case:
- B must become the root
- We rotate B to the root position
- A becomes the left child of B

AVL "ROTATION"

- To correct this case:
- B must become the root
- We rotate B to the root position
- A becomes the left child of B
- This is called the "left rotation"

AVL "ROTATION"

- Right rotation

AVL "ROTATION"

- Right rotation
- Symmetric concept

AVL "ROTATION"

- Right rotation
- Symmetric concept
- B must become the new root

AVL "ROTATION"

- These are the "single" rotations

AVL "ROTATION"

- These are the "single" rotations
- In general, this rotation occurs when an addition is made to the right-right or left-left grandchild

AVL "ROTATION"

- These are the "single" rotations
- In general, this rotation occurs when an addition is made to the right-right or left-left grandchild
- The balance might not be off on the parent! An insert might upset balance up the tree

AVL "ROTATION"

- General case
- Suppose this tree is balanced, $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ all have the same height

AVL "ROTATION"

- General case
- Suppose this tree is balanced, $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ all have the same height
- Adding A, puts C out of balance

AVL "ROTATION"

- General case
- Suppose this tree is balanced, $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ all have the same height
- Adding A, puts C out of balance
- Rotate B up and pass
 the Y subtree to C

AVL "ROTATION"

- General case
- Suppose this tree is balanced, $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ all have the same height
- Adding A, puts C out of balance
- Rotate B up and pass
 the Y subtree to C

AVL "ROTATION"

- General case
- Suppose this tree is balanced, $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ all have the same height
- Adding A, puts C out of balance
- Rotate B up and pass
 the Y subtree to C
- Perform this rotation at the lowest point of imbalance

SINGLE ROTATION EXAMPLE

- Consider the above tree

SINGLE ROTATION EXAMPLE

- Consider the above tree
- Is it an AVL tree?

SINGLE ROTATION EXAMPLE

- Consider the above tree
- Is it an AVL tree? Yes

SINGLE ROTATION EXAMPLE

10:

- Add 16 to the tree

SINGLE ROTATION EXAMPLE

- Add 16 to the tree
- Is it unbalanced now?

SINGLE ROTATION EXAMPLE

- Add 16 to the tree
- Is it unbalanced now? Where?

SINGLE ROTATION EXAMPLE

- Add 16 to the tree
- Is it unbalanced now? Where? 22

SINGLE ROTATION EXAMPLE

- Add 16 to the tree
- Is it unbalanced now? Where? 22
- Also at 15 , but we choose the lowest point

SINGLE ROTATION EXAMPLE

- Perform the rotation around 22

SINGLE ROTATION EXAMPLE

- Perform the rotation around 22
- What rotation takes place?

SINGLE ROTATION EXAMPLE

- Perform the rotation around 22
- What rotation takes place?

SINGLE ROTATION EXAMPLE

- Perform the rotation around 22
- What rotation takes place?
- What is the resulting tree?

SINGLE ROTATION EXAMPLE

- 19 must move up to where 22 was
- 20 changes parents
- Balances are recomputed throughout the tree

AVL "ROTATION"

- These two rotations (right-right and leftleft) are symmetric and can be solved the same way

AVL "ROTATION"

- These two rotations (right-right and leftleft) are symmetric and can be solved the same way
- Named by the location of the added node relative to the unbalanced node

AVL "ROTATION"

- These two rotations (right-right and leftleft) are symmetric and can be solved the same way
- Named by the location of the added node relative to the unbalanced node
- What are the other two cases?

AVL "ROTATION"

- Right left case

AVL "ROTATION"

- Right left case
- Again, A is out of balance

AVL "ROTATION"

- Right left case
- Again, A is out of balance
- This time, the addition (B) comes between A and C

AVL "ROTATION"

- Right left case
- Again, A is out of balance
- This time, the addition (B) comes between A and C
- In this case, the grandchild must become the root.

AVL "ROTATION"

- Right left case
- Again, A is out of balance
- This time, the addition (B) comes between A and C
- In this case, the grandchild must become the root.

AVL "ROTATION"

- Identifying what should be the new root is key

AVL "ROTATION"

- Identifying what should be the new root is key
- Imagine "lifting" up the root

AVL "ROTATION"

- Identifying what should be the new root is key
- Imagine "lifting" up the root
- Where will the children have to go to maintain the search property?

AVL "ROTATION"

- I apologize for what you are about to see...

AVL "ROTATION"

- This is for your reference later.

AVL "ROTATION"

- Let's do an example. Insert(13)

AVL "ROTATION"

- Where is the imbalance?

AVL "ROTATION"

- Where is the imbalance?

AVL "ROTATION"

- Where is the imbalance? (also 7 and 10)

AVL "ROTATION"

- What must be the new root?

AVL "ROTATION"

- What must be the new root?

AVL "ROTATION"

- What must be the new root? Why?

AVL "ROTATION"

- What does the new tree look like?

AVL "ROTATION"

- The replaced root is always a child of the new root!

AVL HEIGHT (PROOF)

- You do not need to memorize this proof, but it is interesting to think about

AVL HEIGHT (PROOF)

- You do not need to memorize this proof, but it is interesting to think about
- Let's consider the most "unbalanced" AVL tree, that is: the tree for each height that has the fewest nodes

AVL HEIGHT (PROOF)

- For height 1 , there is only one possible tree.

AVL HEIGHT (PROOF)

- For height 1, there is only one possible tree.
- For height 2, there are two possible trees, each with two nodes.

AVL HEIGHT (PROOF)

- For height 1 , there is only one possible tree.
- For height 2, there are two possible trees, each with two nodes.

AVL HEIGHT (PROOF)

- What about for height three? What tree has the fewest number of nodes?

AVL HEIGHT (PROOF)

- What about for height three? What tree has the fewest number of nodes?
- Hint: balance will probably not be zero

AVL HEIGHT (PROOF)

- What about for height three? What tree has the fewest number of nodes?
- Hint: balance will probably not be zero

AVL HEIGHT (PROOF)

- What about for height three? What tree has the fewest number of nodes?
- Hint: balance will probably not be zero

There are multiple of these trees, but what's special about it?

AVL HEIGHT (PROOF)

- The smallest tree of size three is a node where one child is the smallest tree of size one and the other one is the smallest tree of size two.

AVL HEIGHT (PROOF)

- In general then, if $\mathbf{N}_{1}=1$ and $\mathbf{N}_{2}=2$ and $N_{3}=4$, what is N_{k} ?

AVL HEIGHT (PROOF)

- In general then, if $\mathbf{N}_{1}=1$ and $\mathbf{N}_{2}=2$ and $N_{3}=4$, what is N_{k} ?
- Powers of two seems intuitive, but this is a good case of why 3 doesn't always make the pattern.

AVL HEIGHT (PROOF)

- In general then, if $\mathbf{N}_{1}=1$ and $\mathbf{N}_{2}=2$ and $N_{3}=4$, what is N_{k} ?
- Powers of two seems intuitive, but this is a good case of why 3 doesn't always make the pattern.
- $\mathbf{N}_{4}=7$, how do I know?

AVL HEIGHT (PROOF)

- In general then, if $\mathbf{N}_{1}=1$ and $\mathbf{N}_{2}=2$ and $N_{3}=4$, what is N_{k} ?
- $\mathbf{N}_{\mathrm{k}}=\mathbf{1}+\mathbf{N}_{\mathrm{k}-1}+\mathbf{N}_{\mathrm{k}-2}$

Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height $k-1\left(N_{k-1}\right)$ and the other child is the smallest AVL tree of height k-2 $\left(\mathrm{N}_{\mathrm{k}-2}\right)$.

AVL HEIGHT (PROOF)

- In general then, if $\mathbf{N}_{1}=1$ and $\mathbf{N}_{2}=2$ and $N_{3}=4$, what is N_{k} ?
- $\mathbf{N}_{\mathrm{k}}=\mathbf{1}+\mathbf{N}_{\mathrm{k}-1}+\mathbf{N}_{\mathrm{k}-2}$

Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height $k-1\left(N_{k-1}\right)$ and the other child is the smallest AVL tree of height k-2 $\left(\mathrm{N}_{\mathrm{k}-2}\right)$.

- This means every non-leaf has balance 1

AVL HEIGHT (PROOF)

- In general then, if $\mathbf{N}_{1}=1$ and $\mathbf{N}_{2}=2$ and $N_{3}=4$, what is N_{k} ?
- $\mathbf{N}_{\mathrm{k}}=1+\mathbf{N}_{\mathrm{k}-1}+\mathbf{N}_{\mathrm{k}-2}$

Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height $k-1\left(N_{k-1}\right)$ and the other child is the smallest AVL tree of height $\mathrm{k}-2\left(\mathrm{~N}_{\mathrm{k}-2}\right)$.

- This means every non-leaf has balance 1
- Nothing in the tree is perfectly balanced.

AVL HEIGHT (PROOF)

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{k}}=1+\mathrm{N}_{\mathrm{k}-1}+\mathrm{N}_{\mathrm{k}-2} \\
& \mathrm{~N}_{\mathrm{k}-1}=1+\mathrm{N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3}
\end{aligned}
$$

AVL HEIGHT (PROOF)

$\mathrm{N}_{\mathrm{k}}=1+\mathrm{N}_{\mathrm{k}-1}+\mathrm{N}_{\mathrm{k}-2}$
$\mathrm{N}_{\mathrm{k}-1}=1+\mathrm{N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3}$

AVL HEIGHT (PROOF)

Substitute the k-1 into the original equation

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{k}}=1+\mathrm{N}_{\mathrm{k}-1}+\mathrm{N}_{\mathrm{k}-2} \\
& \mathrm{~N}_{\mathrm{k}-1}=1+\mathrm{N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3}
\end{aligned}
$$

AVL HEIGHT (PROOF)

$1+\mathrm{N}_{\mathrm{k}-3}$ must be greater than zero

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{k}}=1+\mathrm{N}_{\mathrm{k}-1}+\mathrm{N}_{\mathrm{k}-2} \\
& \mathrm{~N}_{\mathrm{k}-1}=1+\mathrm{N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3} \\
& \mathrm{~N}_{\mathrm{k}}=1+\left(1+\mathrm{N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3}\right)+\mathrm{N}_{\mathrm{k}-2} \\
& \mathrm{~N}_{\mathrm{k}}=1+2 \mathrm{~N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3} \\
& \mathrm{~N}_{\mathrm{k}}>2 \mathrm{~N}_{\mathrm{k}-2}
\end{aligned}
$$

AVL HEIGHT (PROOF)

$1+\mathbf{N}_{\mathrm{k}-3}$ must be greater than zero
$\mathrm{N}_{\mathrm{k}}=1+\mathrm{N}_{\mathrm{k}-1}+\mathrm{N}_{\mathrm{k}-2}$
$\mathrm{N}_{\mathrm{k}-1}=1+\mathrm{N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3}$
$\mathrm{N}_{\mathrm{k}}=1+\left(1+\mathrm{N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3}\right)+\mathrm{N}_{\mathrm{k}-2}$
$\mathrm{N}_{\mathrm{k}}=1+2 \mathrm{~N}_{\mathrm{k}-2}+\mathrm{N}_{\mathrm{k}-3}$
$\mathrm{N}_{\mathrm{k}}>2 \mathrm{~N}_{\mathrm{k}-2}$
This means the tree doubles in size after every two height (compared to a perfect tree which doubles with every added height)

AVL CONCLUSION

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?

AVL CONCLUSION

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
- Insert(key k, value v)
- Find(key k)

AVL CONCLUSION

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
- Insert(key k, value v)
- Find(key k)
- Delete(key k)

AVL CONCLUSION

- If AVL rotation can enforce $\mathbf{O}(\log n)$ height, what are the asymptotic runtimes for our functions?
- Insert(key k, value v)
- Find(key k) : O(height) $=\mathrm{O}(\log n)$
- Delete(key k)

AVL CONCLUSION

- If AVL rotation can enforce $\mathbf{O}(\log \mathrm{n})$ height, what are the asymptotic runtimes for our functions?
- Insert(key k, value v) = O(log n) + balancing
- Find(key k) : O(height) $=O(\log n)$
- Delete(key k)

AVL CONCLUSION

- If AVL rotation can enforce $\mathbf{O}(\log \mathrm{n})$ height, what are the asymptotic runtimes for our functions?
- Insert(key k, value v) $=\mathrm{O}(\log \mathrm{n})+$ balancing
- Find(key k) : O(height) $=O(\log n)$
- Delete(key k): O(log n) + balancing(?)
- How long does it take to perform a balance?

AVL CONCLUSION

- If AVL rotation can enforce $\mathbf{O}(\log \mathbf{n})$ height, what are the asymptotic runtimes for our functions?
- Insert(key k, value v) $=\mathrm{O}(\log \mathrm{n})+$ balancing
- Find(key k) : O(height) $=O(\log n)$
- Delete(key k): O(log n) + balancing(?)
- How long does it take to perform a balance?
- There are at most three nodes and four subtrees to move around.

AVL CONCLUSION

- If AVL rotation can enforce $\mathbf{O}(\log \mathbf{n})$ height, what are the asymptotic runtimes for our functions?
- Insert(key k, value v) $=\mathrm{O}(\log \mathrm{n})+$ balancing
- Find(key k) : O(height) $=O(\log n)$
- Delete(key k): O(log n) + balancing(?)
- How long does it take to perform a balance?
- There are at most three nodes and four subtrees to move around. O(1)

AVL CONCLUSION

- By using AVL rotations, we can keep the tree balanced

AVL CONCLUSION

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has $O(\log n)$ height

AVL CONCLUSION

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has O(log n) height
- This does not come at an increased asymptotic runtime for insert.

AVL CONCLUSION

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has O(log n) height
- This does not come at an increased asymptotic runtime for insert.
- Rotations take a constant time.

NEXT CLASS

- B-Trees

NEXT CLASS

- B-Trees
- Memory analysis

NEXT CLASS

- B-Trees
- Memory analysis
- Computer architecture constraints

