
CSE 332
JULY 5TH – AVL TREES

ASSORTED MINUTIAE
•  P1 due at 11:30 PM tonight

ASSORTED MINUTIAE
•  P1 due at 11:30 PM tonight
•  EX05 due at 11:30 PM

ASSORTED MINUTIAE
•  P1 due at 11:30 PM tonight
•  EX05 due at 11:30 PM
•  EX06 on AVL trees, out tonight

ASSORTED MINUTIAE
•  P1 due at 11:30 PM tonight
•  EX05 due at 11:30 PM
•  EX06 on AVL trees, out tonight
•  Exam next Friday

ASSORTED MINUTIAE
•  P1 due at 11:30 PM tonight
•  EX05 due at 11:30 PM
•  EX06 on AVL trees, out tonight
•  Exam next Friday

•  Review in section Thursday

ASSORTED MINUTIAE
•  P1 due at 11:30 PM tonight
•  EX05 due at 11:30 PM
•  EX06 on AVL trees, out tonight
•  Exam next Friday

•  Review in section Thursday
•  Good review times?

TODAY’S LECTURE
•  AVL Trees

•  Balance
•  Implementation

TODAY’S LECTURE
•  AVL Trees

•  Balance
•  Implementation

•  Memory analysis
•  Will discuss after AVL on Friday

REVIEW
•  AVL Trees

REVIEW
•  AVL Trees

•  BST trees with AVL property

REVIEW
•  AVL Trees

•  BST trees with AVL property
•  Abs(height(left) – height(right)) <= 1

REVIEW
•  AVL Trees

•  BST trees with AVL property
•  Abs(height(left) – height(right)) <= 1
•  Heights of subtrees can differ by at most

one

REVIEW
•  AVL Trees

•  BST trees with AVL property
•  Abs(height(left) – height(right)) <= 1
•  Heights of subtrees can differ by at most

one
•  This property must be preserved

throughout the tree

REVIEW
7

4

3

2

5

6

10

9

8 11

12

14 •  Is this an AVL Tree?

13

REVIEW
7

4

3

2

5

6

10

9

8 11

12

14 •  Is this an AVL Tree?
•  Calculate balance for each node

13

REVIEW
7

4

3

2

5

6

10

9

8 11

12

14 •  Is this an AVL Tree?
•  Calculate balance for each node

13 0

1

0

1

0 0

1

1

1

1

0 1

0

REVIEW
7

4

3

2

5

6

10

9

8 11

12

14 •  Is this an AVL Tree? Yes!
•  Calculate balance for each node

13 0

1

0

1

0 0

1

1

1

1

0 1

0

•  What about this one?

REVIEW
6

2

1 4

3 5

8

7

9 11

12

10 13

•  What about this one?
•  No, 8 is out of balance

REVIEW
6

2

1 4

3 5

8

7

9 11

12

10 13

REVIEW
8

6

2

-1 5

7

9

11

15

•  Is this an AVL Tree?

REVIEW
8

6

2

-1 5

7

9

11

15

•  Is this an AVL Tree?
•  No, AVL trees must still maintain Binary Search

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k)
•  Delete(key k)

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k): Same as BST!
•  Delete(key k)

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k): Same as BST!
•  Delete(key k):

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k): Same as BST!
•  Delete(key k)

•  For insert, we should maintain AVL property
as we build

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k): Same as BST!
•  Delete(key k):

•  For insert, we should maintain AVL property
as we build

AVL OPERATIONS
•  Insert(key k, value v):

AVL OPERATIONS
•  Insert(key k, value v):

•  Insert the key value pair into the dictionary

AVL OPERATIONS
•  Insert(key k, value v):

•  Insert the key value pair into the dictionary
•  Verify that balance is maintained

AVL OPERATIONS
•  Insert(key k, value v):

•  Insert the key value pair into the dictionary
•  Verify that balance is maintained
•  If not, correct the tree

AVL OPERATIONS
•  Insert(key k, value v):

•  Insert the key value pair into the dictionary
•  Verify that balance is maintained
•  If not, correct the tree

•  How do we correct the tree?

AVL INSERT

6

•  Start with the single root

AVL INSERT

6

•  Add 7 to the tree

7

AVL INSERT

6

•  Add 7 to the tree. Is balance preserved?

7

AVL INSERT

6

•  Add 7 to the tree. Is balance preserved?
•  Yes

7

1

0

AVL INSERT

6

•  Add 9 to the tree

7

9

AVL INSERT

6

•  Add 9 to the tree. Is balance preserved?

7

9

AVL INSERT

6

•  Add 9 to the tree. Is balance preserved?
•  No.

7

9 0

1

2

AVL INSERT

6

•  How do we correct this imbalance?

7

9 0

1

2

AVL INSERT

6

•  How do we correct this imbalance?
•  Important to preserve binary search

7

9 0

1

2

AVL INSERT

6

•  How do we correct this imbalance?
•  Important to preserve binary search

7

9 0

1

2

AVL INSERT

6

•  What shape do we want?

7

9 0

1

2

AVL INSERT

6

•  What shape do we want?

7

9 0

1

2

AVL INSERT

6

•  What shape do we want?
•  What then do we have as the root?

7

9 0

1

2

AVL INSERT

6

•  Since 7 must be the root, we “rotate” that node
into position.

7

9 0

0

0

AVL “ROTATION”
•  To correct this case:

•  B must become the root
A

B

C

AVL “ROTATION”
•  To correct this case:

•  B must become the root
•  We rotate B to the root position

A

B

C

AVL “ROTATION”
•  To correct this case:

•  B must become the root
•  We rotate B to the root position
•  A becomes the left child of B

A

B

C

A

B

C

AVL “ROTATION”
•  To correct this case:

•  B must become the root
•  We rotate B to the root position
•  A becomes the left child of B
•  This is called the “left rotation”

A

B

C

A

B

C

AVL “ROTATION”
•  Right rotation C

B

A

A

B

C

AVL “ROTATION”
•  Right rotation

•  Symmetric concept
C

B

A

A

B

C

AVL “ROTATION”
•  Right rotation

•  Symmetric concept
•  B must become the new root

C

B

A

A

B

C

AVL “ROTATION”
•  These are the “single” rotations

AVL “ROTATION”
•  These are the “single” rotations

•  In general, this rotation occurs when an
addition is made to the right-right or left-left
grandchild

AVL “ROTATION”
•  These are the “single” rotations

•  In general, this rotation occurs when an
addition is made to the right-right or left-left
grandchild

•  The balance might not be off on the
parent! An insert might upset balance up
the tree

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

C

B

Z

Y X

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

•  Adding A, puts C out
of balance

C

B

A

Z

Y X

1

2

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

•  Adding A, puts C out
of balance

•  Rotate B up and pass
the Y subtree to C

C

B

A

Z

Y X

1

2

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

•  Adding A, puts C out
of balance

•  Rotate B up and pass
the Y subtree to C

C

B

A

Z Y
X

0

0

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

•  Adding A, puts C out
of balance

•  Rotate B up and pass
the Y subtree to C

•  Perform this rotation at the lowest point
of imbalance

C

B

A

Z Y
X

0

0

SINGLE ROTATION EXAMPLE

•  Consider the above tree

10 4

22 8

15

19

17 20

24

SINGLE ROTATION EXAMPLE

•  Consider the above tree
•  Is it an AVL tree?

10 4

22 8

15

19

17 20

24

SINGLE ROTATION EXAMPLE

•  Consider the above tree
•  Is it an AVL tree? Yes

10 4

22 8

15

19

17 20

24

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree

10 4

22 8

15

19

17 20

24

16

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree
•  Is it unbalanced now?

10 4

22 8

15

19

17 20

24

16

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree
•  Is it unbalanced now? Where?

10 4

22 8

15

19

17 20

24

16

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree
•  Is it unbalanced now? Where? 22

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree
•  Is it unbalanced now? Where? 22
•  Also at 15, but we choose the lowest point

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

SINGLE ROTATION EXAMPLE

•  Perform the rotation around 22

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

SINGLE ROTATION EXAMPLE

•  Perform the rotation around 22
•  What rotation takes place?

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

SINGLE ROTATION EXAMPLE

•  Perform the rotation around 22
•  What rotation takes place?

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

C

B

A

Z

Y X

1

2

SINGLE ROTATION EXAMPLE

•  Perform the rotation around 22
•  What rotation takes place?
•  What is the resulting tree?

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

SINGLE ROTATION EXAMPLE

•  19 must move up to where 22 was
•  20 changes parents
•  Balances are recomputed throughout the tree

10 4

19 8

15

17

16 20

22

0

1

0

0

0

0 0

0

1

24 0

AVL “ROTATION”
•  These two rotations (right-right and left-

left) are symmetric and can be solved the
same way

AVL “ROTATION”
•  These two rotations (right-right and left-

left) are symmetric and can be solved the
same way
•  Named by the location of the added node

relative to the unbalanced node

AVL “ROTATION”
•  These two rotations (right-right and left-

left) are symmetric and can be solved the
same way
•  Named by the location of the added node

relative to the unbalanced node
•  What are the other two cases?

AVL “ROTATION”
•  Right left case A

C

B

AVL “ROTATION”
•  Right left case

•  Again, A is out of balance

A

C

B

AVL “ROTATION”
•  Right left case

•  Again, A is out of balance
•  This time, the addition (B)

comes between A and C

A

C

B

AVL “ROTATION”
•  Right left case

•  Again, A is out of balance
•  This time, the addition (B)

comes between A and C
•  In this case, the grandchild

must become the root.

A

C

B

AVL “ROTATION”
•  Right left case

•  Again, A is out of balance
•  This time, the addition (B)

comes between A and C
•  In this case, the grandchild

must become the root.

A

C

B

A

B

C

AVL “ROTATION”
•  Identifying what should

be the new root is key
A

C

B

A

B

C

AVL “ROTATION”
•  Identifying what should

be the new root is key
•  Imagine “lifting” up the root

A

C

B

A

B

C

AVL “ROTATION”
•  Identifying what should

be the new root is key
•  Imagine “lifting” up the root
•  Where will the children have

to go to maintain the search
property?

A

C

B

A

B

C

AVL “ROTATION”
•  I apologize for what you are about to

see…

AVL “ROTATION”
•  This is for your reference later.

a

h-1

h

h-1 h

V U

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1
h

h+1

V U

h+2

Z

a

h

b
h

AVL “ROTATION”

•  Let’s do an example. Insert(13)

7

4

3

2

5

6

10

9

8 11

12

16

15

14

AVL “ROTATION”

•  Where is the imbalance?

7

4

3

2

5

6

10

9

8 11

12

16

15

14

13

AVL “ROTATION”

•  Where is the imbalance?

7

4

3

2

5

6

10

9

8 11

12

16

15

14

13

AVL “ROTATION”

•  Where is the imbalance? (also 7 and 10)

7

4

3

2

5

6

10

9

8 11

12

16

15

14

13

AVL “ROTATION”

•  What must be the new root?

7

4

3

2

5

6

10

9

8 11

12

16

15

14

13

AVL “ROTATION”

•  What must be the new root?

7

4

3

2

5

6

10

9

8 11

12

16

15

14

13

AVL “ROTATION”

•  What must be the new root? Why?

7

4

3

2

5

6

10

9

8 11

12

16

15

14

13

AVL “ROTATION”

•  What does the new tree look like?

7

4

3

2

5

6

10

9

8 11

12

16

15

14

13

AVL “ROTATION”

•  The replaced root is always a child of the
new root!

7

4

3

2

5

6

10

9

8 12

14

16

15

11 13

AVL HEIGHT (PROOF)
•  You do not need to memorize this proof,

but it is interesting to think about

AVL HEIGHT (PROOF)
•  You do not need to memorize this proof,

but it is interesting to think about
•  Let’s consider the most “unbalanced” AVL

tree, that is: the tree for each height that has
the fewest nodes

AVL HEIGHT (PROOF)
•  For height 1, there is only one possible

tree.

AVL HEIGHT (PROOF)
•  For height 1, there is only one possible

tree.

•  For height 2, there are two possible trees,
each with two nodes.

AVL HEIGHT (PROOF)
•  For height 1, there is only one possible

tree.

•  For height 2, there are two possible trees,
each with two nodes.

AVL HEIGHT (PROOF)
•  What about for height three? What tree

has the fewest number of nodes?

AVL HEIGHT (PROOF)
•  What about for height three? What tree

has the fewest number of nodes?
•  Hint: balance will probably not be zero

AVL HEIGHT (PROOF)
•  What about for height three? What tree

has the fewest number of nodes?
•  Hint: balance will probably not be zero

AVL HEIGHT (PROOF)
•  What about for height three? What tree

has the fewest number of nodes?
•  Hint: balance will probably not be zero

There are multiple of these trees, but what’s
special about it?

AVL HEIGHT (PROOF)
•  The smallest tree of size three is a node

where one child is the smallest tree of
size one and the other one is the smallest
tree of size two.

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Powers of two seems intuitive, but this is

a good case of why 3 doesn’t always
make the pattern.

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Powers of two seems intuitive, but this is

a good case of why 3 doesn’t always
make the pattern.

•  N4 = 7, how do I know?

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Nk = 1 + Nk-1 + Nk-2

Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (Nk-1) and the other child is the
smallest AVL tree of height k-2 (Nk-2).

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Nk = 1 + Nk-1 + Nk-2

Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (Nk-1) and the other child is the
smallest AVL tree of height k-2 (Nk-2).

•  This means every non-leaf has balance 1

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Nk = 1 + Nk-1 + Nk-2

Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (Nk-1) and the other child is the
smallest AVL tree of height k-2 (Nk-2).

•  This means every non-leaf has balance 1
•  Nothing in the tree is perfectly balanced.

AVL HEIGHT (PROOF)
Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"

AVL HEIGHT (PROOF)

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"

AVL HEIGHT (PROOF)
Substitute the k-1 into the original equation

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"

AVL HEIGHT (PROOF)
1 + Nk-3 must be greater than zero

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"
Nk = 1 + (1 + Nk-2 + Nk-3) + Nk-2"
Nk = 1 + 2Nk-2 + Nk-3"
Nk > 2Nk-2"

 "

"

AVL HEIGHT (PROOF)
1 + Nk-3 must be greater than zero

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"
Nk = 1 + (1 + Nk-2 + Nk-3) + Nk-2"
Nk = 1 + 2Nk-2 + Nk-3"
Nk > 2Nk-2"
This means the tree doubles in size after every
two height (compared to a perfect tree which
doubles with every added height)
 "

"

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v)
•  Find(key k)

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v)
•  Find(key k)
•  Delete(key k)

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v)
•  Find(key k) : O(height) = O(log n)
•  Delete(key k)

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v) = O(log n) + balancing
•  Find(key k) : O(height) = O(log n)
•  Delete(key k)

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v) = O(log n) + balancing
•  Find(key k) : O(height) = O(log n)
•  Delete(key k): O(log n) + balancing(?)

•  How long does it take to perform a balance?

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v) = O(log n) + balancing
•  Find(key k) : O(height) = O(log n)
•  Delete(key k): O(log n) + balancing(?)

•  How long does it take to perform a balance?
•  There are at most three nodes and four

subtrees to move around.

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v) = O(log n) + balancing
•  Find(key k) : O(height) = O(log n)
•  Delete(key k): O(log n) + balancing(?)

•  How long does it take to perform a balance?
•  There are at most three nodes and four

subtrees to move around. O(1)

AVL CONCLUSION
•  By using AVL rotations, we can keep the

tree balanced

AVL CONCLUSION
•  By using AVL rotations, we can keep the

tree balanced
•  An AVL tree has O(log n) height

AVL CONCLUSION
•  By using AVL rotations, we can keep the

tree balanced
•  An AVL tree has O(log n) height
•  This does not come at an increased

asymptotic runtime for insert.

AVL CONCLUSION
•  By using AVL rotations, we can keep the

tree balanced
•  An AVL tree has O(log n) height
•  This does not come at an increased

asymptotic runtime for insert.
•  Rotations take a constant time.

NEXT CLASS
•  B-Trees

NEXT CLASS
•  B-Trees

•  Memory analysis

NEXT CLASS
•  B-Trees

•  Memory analysis
•  Computer architecture constraints

