
CSE 332
JULY 31ST – ALPHA BETA

ADMINISTRIVIA
•  P3 is out

•  Partners form filled out by noon today!
•  Please nothing like last time

ADMINISTRIVIA
•  P3 is out

•  Partners form filled out by noon today!
•  Please nothing like last time

•  3 Exercises out tonight, 2 due Friday one due Monday

ADMINISTRIVIA
•  P3 is out

•  Partners form filled out by noon today!
•  Please nothing like last time

•  3 Exercises out tonight, 2 due Friday one due Monday

ADMINISTRIVIA
•  P3 is out

•  Partners form filled out by noon today!
•  Please nothing like last time

•  3 Exercises out tonight, 2 due Friday one due Monday

•  Considerations for final exam

•  1 hour is going to be difficult to cover all of the material

MINIMAX REVIEW
•  Rules of the games

MINIMAX REVIEW
•  Rules of the games

•  Two players

MINIMAX REVIEW
•  Rules of the games

•  Two players
•  Zero sum

MINIMAX REVIEW
•  Rules of the games

•  Two players
•  Zero sum
•  Perfect information

MINIMAX REVIEW
•  Rules of the games

•  Two players
•  Zero sum
•  Perfect information

•  Works around a decision tree

MINIMAX REVIEW
•  Rules of the games

•  Two players
•  Zero sum
•  Perfect information

•  Works around a decision tree

•  Let’s look at a simple game… tic-toe

MINIMAX REVIEW
•  Rules of the games

•  Two players
•  Zero sum
•  Perfect information

•  Works around a decision tree

•  Let’s look at a simple game… tic-toe
•  Players assume that the other team is playing optimally

MINIMAX REVIEW
•  Rules of the games

•  Two players
•  Zero sum
•  Perfect information

•  Works around a decision tree

•  Let’s look at a simple game… tic-toe
•  Players assume that the other team is playing optimally

•  Compute, what would I do if I was in the other persons
shoes

MINIMAX REVIEW
•  This strategy makes it easy to code games

that fit into those parameters

MINIMAX REVIEW
•  This strategy makes it easy to code games

that fit into those parameters
•  Many games have very expansive decision trees

MINIMAX REVIEW
•  This strategy makes it easy to code games

that fit into those parameters
•  Many games have very expansive decision trees
•  How to improve?

MINIMAX REVIEW
•  This strategy makes it easy to code games

that fit into those parameters
•  Many games have very expansive decision trees
•  How to improve?

•  Parallelize or prune

MINIMAX REVIEW
•  This strategy makes it easy to code games

that fit into those parameters
•  Many games have very expansive decision trees
•  How to improve?

•  Parallelize or prune
•  How to parallelize minimax?

MINIMAX REVIEW
•  This strategy makes it easy to code games

that fit into those parameters
•  Many games have very expansive decision trees
•  How to improve?

•  Parallelize or prune
•  How to parallelize minimax?

•  Java uses the ForkJoinPool around RecursiveTasks, what
are the important things the task needs to do and know?

MINIMAX REVIEW
•  Parallelizing Minimax

MINIMAX REVIEW
•  Parallelizing Minimax

•  RecursiveTask needs to know
•  the current state of the board

MINIMAX REVIEW
•  Parallelizing Minimax

•  RecursiveTask needs to know
•  the current state of the board
•  which player moves next

MINIMAX REVIEW
•  Parallelizing Minimax

•  RecursiveTask needs to know
•  the current state of the board
•  which player moves next
•  what moves are possible

MINIMAX REVIEW
•  Parallelizing Minimax

•  RecursiveTask needs to know
•  the current state of the board
•  which player moves next
•  what moves are possible

•  Should return:

MINIMAX REVIEW
•  Parallelizing Minimax

•  RecursiveTask needs to know
•  the current state of the board
•  which player moves next
•  what moves are possible

•  Should return:
•  The optimal move

MINIMAX REVIEW
•  Parallelizing Minimax

•  RecursiveTask needs to know
•  the current state of the board
•  which player moves next
•  what moves are possible

•  Should return:
•  The optimal move

•  Other lessons?

MINIMAX REVIEW
•  Parallelizing Minimax

•  RecursiveTask needs to know
•  the current state of the board
•  which player moves next
•  what moves are possible

•  Should return:
•  The optimal move

•  Other lessons?
•  The task should create other recursive tasks to find the

results of the possible moves.

MINIMAX REVIEW
•  How to parallelize a large number of

processes?

MINIMAX REVIEW
•  How to parallelize a large number of

processes?
•  We know that we want the threads to start other threads

•  Divide and conquer

MINIMAX REVIEW
•  How to parallelize a large number of

processes?
•  We know that we want the threads to start other threads

•  Divide and conquer
•  There may also reach a point where we just want to

allocate a bunch of threads serially

MINIMAX REVIEW
•  How to parallelize a large number of

processes?
•  We know that we want the threads to start other threads

•  Divide and conquer
•  There may also reach a point where we just want to

allocate a bunch of threads serially
•  This is another cutoff

MINIMAX REVIEW
•  How to parallelize a large number of

processes?
•  We know that we want the threads to start other threads

•  Divide and conquer
•  There may also reach a point where we just want to

allocate a bunch of threads serially
•  This is another cutoff

•  At the end, there is usually some base-case where the
work is done sequentially

MINIMAX REVIEW
•  How to parallelize a large number of

processes?
•  We know that we want the threads to start other threads

•  Divide and conquer
•  There may also reach a point where we just want to

allocate a bunch of threads serially
•  This is another cutoff

•  At the end, there is usually some base-case where the
work is done sequentially

•  Could be multiple boards, or just taking the time to do
multiple boards

MINIMAX REVIEW
•  This is a new type of cutoff

MINIMAX REVIEW
•  This is a new type of cutoff

•  Exercise due Friday involves you experimenting with the
findPrimes parallel program we’ve given you, adding the
forking cutoff and then running some experimentation

•  Parallelism aside, do we actually need to compute
everything?

MINIMAX REVIEW
•  This is a new type of cutoff

•  Exercise due Friday involves you experimenting with the
findPrimes parallel program we’ve given you, adding the
forking cutoff and then running some experimentation

•  Parallelism aside, do we actually need to compute
everything?
•  No, we can perform alpha-beta pruning

MINIMAX REVIEW
•  If we know our opponent has a better option,

then they’ll take it

MINIMAX REVIEW
•  If we know our opponent has a better option,

then they’ll take it
•  [Alpha,beta] is a pair of bounds for acceptable end values

for a particular move

MINIMAX REVIEW
•  If we know our opponent has a better option,

then they’ll take it
•  [Alpha,beta] is a pair of bounds for acceptable end values

for a particular move
•  At any given level of the tree, we can only set/prune on

either alpha or beta

MINIMAX REVIEW
•  If we know our opponent has a better option,

then they’ll take it
•  [Alpha,beta] is a pair of bounds for acceptable end values

for a particular move
•  At any given level of the tree, we can only set/prune on

either alpha or beta
•  Therefore, alpha and beta need to be switching throughout

the tree

MINIMAX REVIEW
•  If we know our opponent has a better option,

then they’ll take it
•  [Alpha,beta] is a pair of bounds for acceptable end values

for a particular move
•  At any given level of the tree, we can only set/prune on

either alpha or beta
•  Therefore, alpha and beta need to be switching throughout

the tree
•  Cheating with Adam’s slides

•  https://courses.cs.washington.edu/courses/cse332/17wi/
lectures/p3/p3.pdf

ALPHA BETA
•  We can reduce the number of edges we need

to consider in order to eliminate some nodes

ALPHA BETA
•  We can reduce the number of edges we need

to consider in order to eliminate some nodes
•  We will always have to consider all of the moves at some

level of the tree

ALPHA BETA
•  We can reduce the number of edges we need

to consider in order to eliminate some nodes
•  We will always have to consider all of the moves at some

level of the tree
•  The very first move needs to be recursively analyzed to the

very bottom, then our alpha beta is [-inf,inf]

ALPHA BETA
•  We can reduce the number of edges we need

to consider in order to eliminate some nodes
•  We will always have to consider all of the moves at some

level of the tree
•  The very first move needs to be recursively analyzed to the

very bottom, then our alpha beta is [-inf,inf]
•  All of the moves at this first level need to be calculated,

you can’t know for sure that you can/cannot improve

ALPHA BETA
•  We can reduce the number of edges we need

to consider in order to eliminate some nodes
•  We will always have to consider all of the moves at some

level of the tree
•  The very first move needs to be recursively analyzed to the

very bottom, then our alpha beta is [-inf,inf]
•  All of the moves at this first level need to be calculated,

you can’t know for sure that you can/cannot improve
•  Remember, then, the number of nodes alpha-beta can

prune is dependent on the order that they are considered.

ALPHA BETA
•  We can reduce the number of edges we need

to consider in order to eliminate some nodes
•  We will always have to consider all of the moves at some

level of the tree
•  The very first move needs to be recursively analyzed to the

very bottom, then our alpha beta is [-inf,inf]
•  All of the moves at this first level need to be calculated,

you can’t know for sure that you can/cannot improve
•  Remember, then, the number of nodes alpha-beta can

prune is dependent on the order that they are considered.
•  Move ordering is a good heuristic for p3 to save some time

ITERATIVE DEEPENING
•  One final topic about P3

ITERATIVE DEEPENING
•  One final topic about P3

•  Chess is a timed game, so you want to balance time spent
with how much computing you’ll need

ITERATIVE DEEPENING
•  One final topic about P3

•  Chess is a timed game, so you want to balance time spent
with how much computing you’ll need

•  So, first try to run minimax/alphabeta at depth k, then if you
have time, run minimax/alphabeta at depth k+1.

ITERATIVE DEEPENING
•  One final topic about P3

•  Chess is a timed game, so you want to balance time spent
with how much computing you’ll need

•  So, first try to run minimax/alphabeta at depth k, then if you
have time, run minimax/alphabeta at depth k+1.

•  We won’t be having you compete against bots, but we will
be having you compete against a timer, you can only have
so much time per move.

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

•  Scan
•  Return some constant value from the whole array

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

•  Scan
•  Return some constant value from the whole array

•  Map

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

•  Scan
•  Return some constant value from the whole array

•  Map
•  Apply some function to each element in the array

PARALLEL PRIMATIVES
•  So far we’ve seen two parallel primatives

•  Scan
•  Return some constant value from the whole array

•  Map
•  Apply some function to each element in the array

•  Together, these are powerful tools of parallelism, but they
may not be sufficient

PARALLEL PRIMATIVES
•  We’re going to introduce two new types of

problems

PARALLEL PRIMATIVES
•  We’re going to introduce two new types of

problems
•  Scan

•  Returns a modified array where each answer depends on
the answer before it

PARALLEL PRIMATIVES
•  We’re going to introduce two new types of

problems
•  Scan

•  Returns a modified array where each answer depends on
the answer before it

•  Pack
•  Filter the array subject to some conditions

PARALLEL PRIMATIVES
•  Scan

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

•  (i.e.) [1,2,3,4] becomes [1,3,6,10]

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

•  (i.e.) [1,2,3,4] becomes [1,3,6,10]
•  This is more complicated than a simple map, the function

requires input from all the data before it.

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

•  (i.e.) [1,2,3,4] becomes [1,3,6,10]
•  This is more complicated than a simple map, the function

requires input from all the data before it.
•  What are some ways we can parallelize this process?

PARALLEL PRIMATIVES
•  Scan

•  Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

•  (i.e.) [1,2,3,4] becomes [1,3,6,10]
•  This is more complicated than a simple map, the function

requires input from all the data before it.
•  What are some ways we can parallelize this process?

•  How do you find the value of a particular node?

PARALLEL PRIMATIVES
•  Partial sum problem

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?
•  Value is going to be the presum + the current value

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?
•  Value is going to be the presum + the current value
•  These presum values are going to be reused!

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?
•  Value is going to be the presum + the current value
•  These presum values are going to be reused!
•  Think about applying a sum reduce!

PARALLEL PRIMATIVES
•  Partial sum problem

•  Each node needs information from all the numbers before
it

•  How to parallelize?
•  What are some ideas?

•  What is the actual function?
•  Value is going to be the presum + the current value
•  These presum values are going to be reused!
•  How would you apply a sum reduce!

•  Scan trees!

