CSE 332

JULY 31ST - ALPHA BETA

ADMINISTRIVIA

 P3is out

Partners form filled out by noon today!
Please nothing like last time

ADMINISTRIVIA

 P3is out

Partners form filled out by noon today!
Please nothing like last time
3 Exercises out tonight, 2 due Friday one due Monday

ADMINISTRIVIA

 P3is out

Partners form filled out by noon today!
Please nothing like last time
3 Exercises out tonight, 2 due Friday one due Monday

ADMINISTRIVIA

 P3is out

« Partners form filled out by noon today!
* Please nothing like last time
3 Exercises out tonight, 2 due Friday one due Monday

« Considerations for final exam

* 1 hour is going to be difficult to cover all of the material

MINIMAX REVIEW

* Rules of the games

MINIMAX REVIEW

* Rules of the games

« Two players

MINIMAX REVIEW

* Rules of the games

« Two players
« Zerosum

MINIMAX REVIEW

* Rules of the games

« Two players
« Zerosum
Perfect information

MINIMAX REVIEW

* Rules of the games

« Two players
« Zerosum
Perfect information
« Works around a decision tree

MINIMAX REVIEW

* Rules of the games

« Two players
« Zerosum
Perfect information
« Works around a decision tree

Let’s look at a simple game... tic-toe

MINIMAX REVIEW

* Rules of the games

« Two players
« Zerosum
« Perfect information
« Works around a decision tree

« Let's look at a simple game... tic-toe
 Players assume that the other team is playing optimally

MINIMAX REVIEW

* Rules of the games

« Two players
« Zerosum
« Perfect information
« Works around a decision tree

« Let's look at a simple game... tic-toe
 Players assume that the other team is playing optimally

- Compute, what would | do if | was in the other persons
shoes

MINIMAX REVIEW

* This strategy makes it easy to code games
that fit into those parameters

MINIMAX REVIEW

* This strategy makes it easy to code games
that fit into those parameters

- Many games have very expansive decision trees

MINIMAX REVIEW

* This strategy makes it easy to code games
that fit into those parameters

- Many games have very expansive decision trees
* How to improve?

MINIMAX REVIEW

* This strategy makes it easy to code games
that fit into those parameters

- Many games have very expansive decision trees

* How to improve?
Parallelize or prune

MINIMAX REVIEW

* This strategy makes it easy to code games
that fit into those parameters

- Many games have very expansive decision trees
* How to improve?
Parallelize or prune
 How to parallelize minimax?

MINIMAX REVIEW

* This strategy makes it easy to code games
that fit into those parameters

- Many games have very expansive decision trees
* How to improve?
Parallelize or prune
 How to parallelize minimax?

« Java uses the ForkdoinPool around RecursiveTasks, what
are the important things the task needs to do and know?

MINIMAX REVIEW

» Parallelizing Minimax

MINIMAX REVIEW

» Parallelizing Minimax

RecursiveTask needs to know
the current state of the board

MINIMAX REVIEW

» Parallelizing Minimax

RecursiveTask needs to know

the current state of the board
which player moves next

MINIMAX REVIEW

» Parallelizing Minimax

 RecursiveTask needs to know

» the current state of the board
* which player moves next
* what moves are possible

MINIMAX REVIEW

» Parallelizing Minimax

 RecursiveTask needs to know

» the current state of the board
* which player moves next
* what moves are possible

* Should return:

MINIMAX REVIEW

» Parallelizing Minimax

* RecursiveTask needs to know
» the current state of the board
* which player moves next
* what moves are possible
« Should return:
* The optimal move

MINIMAX REVIEW

» Parallelizing Minimax

* RecursiveTask needs to know
» the current state of the board
* which player moves next
* what moves are possible
« Should return:
* The optimal move

 QOther lessons?

MINIMAX REVIEW

» Parallelizing Minimax

* RecursiveTask needs to know
» the current state of the board
* which player moves next
* what moves are possible
« Should return:
* The optimal move
* Other lessons?

 The task should create other recursive tasks to find the
results of the possible moves.

MINIMAX REVIEW

 How to parallelize a large number of
processes?

MINIMAX REVIEW

 How to parallelize a large number of
processes?

We know that we want the threads to start other threads
Divide and conquer

MINIMAX REVIEW

 How to parallelize a large number of
processes?

We know that we want the threads to start other threads
Divide and conquer

- There may also reach a point where we just want to
allocate a bunch of threads serially

MINIMAX REVIEW

 How to parallelize a large number of
processes?

We know that we want the threads to start other threads
Divide and conquer

« There may also reach a point where we just want to
allocate a bunch of threads serially

This is another cutoff

MINIMAX REVIEW

 How to parallelize a large number of
processes?

We know that we want the threads to start other threads
Divide and conquer

« There may also reach a point where we just want to
allocate a bunch of threads serially
This is another cutoff

« At the end, there is usually some base-case where the
work is done sequentially

MINIMAX REVIEW

 How to parallelize a large number of
processes?

* We know that we want the threads to start other threads
« Divide and conquer
« There may also reach a point where we just want to
allocate a bunch of threads serially
* This is another cutoff
« At the end, there is usually some base-case where the
work is done sequentially

* Could be multiple boards, or just taking the time to do
multiple boards

MINIMAX REVIEW

* This is a new type of cutoff

MINIMAX REVIEW

* This is a new type of cutoff

« Exercise due Friday involves you experimenting with the
findPrimes parallel program we’ve given you, adding the
forking cutoff and then running some experimentation

 Parallelism aside, do we actually need to compute
everything?

MINIMAX REVIEW

* This is a new type of cutoff

« Exercise due Friday involves you experimenting with the
findPrimes parallel program we’ve given you, adding the
forking cutoff and then running some experimentation

 Parallelism aside, do we actually need to compute
everything?

* No, we can perform alpha-beta pruning

MINIMAX REVIEW

 If we know our opponent has a better option,
then they’ll take it

MINIMAX REVIEW

 If we know our opponent has a better option,
then they’ll take it

- [Alpha,beta] is a pair of bounds for acceptable end values
for a particular move

MINIMAX REVIEW

 If we know our opponent has a better option,
then they’ll take it

- [Alpha,beta] is a pair of bounds for acceptable end values
for a particular move

- At any given level of the tree, we can only set/prune on
either alpha or beta

MINIMAX REVIEW

 If we know our opponent has a better option,
then they’ll take it

- [Alpha,beta] is a pair of bounds for acceptable end values
for a particular move

- At any given level of the tree, we can only set/prune on
either alpha or beta

« Therefore, alpha and beta need to be switching throughout
the tree

MINIMAX REVIEW

 If we know our opponent has a better option,
then they’ll take it

- [Alpha,beta] is a pair of bounds for acceptable end values
for a particular move

- At any given level of the tree, we can only set/prune on
either alpha or beta

« Therefore, alpha and beta need to be switching throughout
the tree

« Cheating with Adam’s slides

ALPHA BETA

 We can reduce the number of edges we need
to consider in order to eliminate some nodes

ALPHA BETA

 We can reduce the number of edges we need
to consider in order to eliminate some nodes

« We will always have to consider all of the moves at some
level of the tree

ALPHA BETA

 We can reduce the number of edges we need
to consider in order to eliminate some nodes
« We will always have to consider all of the moves at some

level of the tree

« The very first move needs to be recursively analyzed to the
very bottom, then our alpha beta is [-inf,inf]

ALPHA BETA

 We can reduce the number of edges we need
to consider in order to eliminate some nodes

« We will always have to consider all of the moves at some
level of the tree

« The very first move needs to be recursively analyzed to the
very bottom, then our alpha beta is [-inf,inf]

« All of the moves at this first level need to be calculated,
you can’t know for sure that you can/cannot improve

ALPHA BETA

 We can reduce the number of edges we need
to consider in order to eliminate some nodes

« We will always have to consider all of the moves at some
level of the tree

« The very first move needs to be recursively analyzed to the
very bottom, then our alpha beta is [-inf,inf]

« All of the moves at this first level need to be calculated,
you can’t know for sure that you can/cannot improve

Remember, then, the number of nodes alpha-beta can
prune is dependent on the order that they are considered.

ALPHA BETA

 We can reduce the number of edges we need
to consider in order to eliminate some nodes

We will always have to consider all of the moves at some
level of the tree

The very first move needs to be recursively analyzed to the
very bottom, then our alpha beta is [-inf,inf]

All of the moves at this first level need to be calculated,
you can’t know for sure that you can/cannot improve

Remember, then, the number of nodes alpha-beta can
prune is dependent on the order that they are considered.

Move ordering is a good heuristic for p3 to save some time

ITERATIVE DEEPENING

* One final topic about P3

ITERATIVE DEEPENING

* One final topic about P3

Chess is a timed game, so you want to balance time spent
with how much computing you'll need

ITERATIVE DEEPENING

* One final topic about P3
- Chess is a timed game, so you want to balance time spent
with how much computing you'll need

« 8o, first try to run minimax/alphabeta at depth k, then if you
have time, run minimax/alphabeta at depth k+1.

ITERATIVE DEEPENING

* One final topic about P3

- Chess is a timed game, so you want to balance time spent
with how much computing you'll need

« 8o, first try to run minimax/alphabeta at depth k, then if you
have time, run minimax/alphabeta at depth k+1.

« We won’t be having you compete against bots, but we will
be having you compete against a timer, you can only have
so much time per move.

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

Scan
Return some constant value from the whole array

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

Scan
Return some constant value from the whole array
Map

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

Scan

Return some constant value from the whole array
Map

Apply some function to each element in the array

PARALLEL PRIMATIVES

« So far we’ve seen two parallel primatives

* Scan

Return some constant value from the whole array
« Map

Apply some function to each element in the array

 Together, these are powerful tools of parallelism, but they
may not be sufficient

PARALLEL PRIMATIVES

 We’re going to introduce two new types of
problems

PARALLEL PRIMATIVES

 We’re going to introduce two new types of
problems

Scan

Returns a modified array where each answer depends on
the answer before it

PARALLEL PRIMATIVES

 We’re going to introduce two new types of
problems

Scan

Returns a modified array where each answer depends on
the answer before it

Pack
Filter the array subject to some conditions

PARALLEL PRIMATIVES

e Scan

PARALLEL PRIMATIVES

e Scan

Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

PARALLEL PRIMATIVES

e Scan

Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

(i.,e.) [1,2,3,4] becomes [1,3,6,10]

PARALLEL PRIMATIVES

e Scan

« Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

- (i.e.)[1,2,3,4] becomes [1,3,6,10]

« This is more complicated than a simple map, the function
requires input from all the data before it.

PARALLEL PRIMATIVES

« Scan
« Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point
- (i.e.)[1,2,3,4] becomes [1,3,6,10]

« This is more complicated than a simple map, the function
requires input from all the data before it.

« What are some ways we can parallelize this process?

PARALLEL PRIMATIVES

e Scan

« Given an array of integers, mutate the array so that each
element contains the sum of the numbers up to that point

- (i.e.)[1,2,3,4] becomes [1,3,6,10]

« This is more complicated than a simple map, the function
requires input from all the data before it.

« What are some ways we can parallelize this process?
How do you find the value of a particular node?

PARALLEL PRIMATIVES

* Partial sum problem

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it
How to parallelize?

PARALLEL PRIMATIVES

* Partial sum problem
Each node needs information from all the numbers before
it
How to parallelize?
What are some ideas?

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it
How to parallelize?

What are some ideas?

What is the actual function?

PARALLEL PRIMATIVES

« Partial sum problem

* Each node needs information from all the numbers before
it
* How to parallelize?
 What are some ideas”?

- What is the actual function?
* Value is going to be the presum + the current value

PARALLEL PRIMATIVES

« Partial sum problem

« Each node needs information from all the numbers before
it
* How to parallelize?
 What are some ideas?
* What is the actual function?
* Value is going to be the presum + the current value
« These presum values are going to be reused!

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it
How to parallelize?
* What are some ideas?
What is the actual function?
* Value is going to be the presum + the current value
« These presum values are going to be reused!
* Think about applying a sum reduce!

PARALLEL PRIMATIVES

« Partial sum problem

Each node needs information from all the numbers before
it
How to parallelize?
* What are some ideas?
What is the actual function?
* Value is going to be the presum + the current value
« These presum values are going to be reused!
* How would you apply a sum reduce!

Scan trees!

