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ASSORTED MINUTIAE 
•  Tokens 

•  Due by Friday at midnight 
•  Submit the solution and a half-page reflection 

showing what lesson you’ve learned from the 
exercise 

•  Indicate you will use a token using grinch, 
then submit to canvas. 

•  If you use a token for multiple things, make it 
into a single document 



ASSORTED MINUTIAE 
•  Course evaluations 

•  Very important to this class and this 
department 

•  Above all, they’re very important to me 
•  Should only take ~5 minutes, and it’s very 

valuable feedback 
•  Only 8 have filled out so far, which is only 5 

away from 50% completion… a particularly 
low bar in my opinion 
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ALGORITHM DESIGN 
•  Solving well known problems is great, but 

how can we use these lessons to approach 
new problems? 
•  Guess and Check (Brute Force) 
•  Linear Solving 
•  Divide and Conquer 
•  Randomization and Approximation 
•  Dynamic Programming 
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LINEAR SOLVING 
•  Basic linear approach to problem solving 
•  If the decider creates a set of correct 

answers, find one at a time 
•  Selection sort: find the lowest element at 

each run through 
•  Sometimes, the best solution 

•  Find the smallest element of an unsorted 
array 
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ALGORITHM DESIGN 
•  Which approach should be used comes 

down to how difficult the problem is 
•  How do we describe problem difficulty? 

•  P : Set of problems that can be solved in 
polynomial time 

•  NP : Set of problems that can be verified in 
polynomial time 

•  EXP: Set of problems that can be solved in 
exponential time 
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ALGORITHM DESIGN 
•  Some problems are provably difficult 

•  Humans haven’t beaten a computer in chess 
in years, but computers are still far away 
from “solving” chess 

•  At each move, the computer needs to 
approximate the best move 

•  Certainty always comes at a price 
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APPROXIMATION DESIGN 
•  What is approximated in the chess game? 

•  Board quality – If you could easily rank which 
board layout in order of quality, chess is 
simply choosing the best board 

•  It is very difficult, branching factor for chess 
is ~35 

•  Look as many moves into the future as time 
allows to see which move yields the best 
outcome 
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APPROXIMATION DESIGN 
•  Recognize what piece of information is 

costly and useful for your algorithm 
•  Consider if there is a cheap way to estimate 

that information 
•  Does your client have a tolerance for error? 
•  Can you map this problem to a similar 

problem? 
•  “Greedy” algorithms are often approximators 
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•  Randomization is also another approach 

•  Selecting a random pivot in quicksort gives 
us more certainty in the runtime 

•  This doesn’t impact correctness, a 
randomized quicksort still returns a sorted list 

•  Two types of randomized algorithms 
•  Las Vegas – correct result in random time 
•  Montecarlo – estimated result in deterministic 

time 
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RANDOMIZATION DESIGN 
•  Can we make a Montecarlo quicksort? 

•  Runs O(n log n) time, but not guaranteed to 
be correct 

•  Terminate a random quicksort early! 
•  If you haven’t gotten the problem in some 

constrained time, just return what you have. 
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RANDOMIZATION DESIGN 
•  How close is a sort? 
•  If we say a list is 90% sorted, what do we 

mean? 
•  90% of elements are smaller than the object 

to the right of it? 
•  The longest sorted subsequence is 90% of 

the length? 
•  Analysis for these problems can be very 

tricky, but it’s an important approach 
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RANDOMIZATION 
•  Guess and check 

•  How bad is it? 
•  Necessary for some hard problems 
•  Still can be useful for some easier problems 
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RANDOMIZATION 
•  If an algorithm has a chance P of returning 

the correct answer to an NP-complete 
problem in O(nk) time 
•  P is our success probability 
•  NP-complete means we can check a solution 

in O(nk) time, but we can find the exact 
solution in O(kn) time – very bad 

•  Suppose we want to have a confidence 
equal to α, how do we get this? 
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RANDOMIZATION 
•  Even if P is low, we can increase our chance 

of finding the correct solution by running our 
randomized estimator multiple times 
•  We can verify solutions in polynomial time, so we 

can just guess-and-check. 
•  How many times do we need to run our algorithm 

to be sure our chance of error is less than α? 



RANDOMIZATION 
(1-p)k = α!



RANDOMIZATION 
(1-p)k = α 
k*ln(1-p) = ln α 
k =  (ln α) 
    (ln(1-p)!

k = log(1-p) α 
 !
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RANDOMIZATION 
•  Cool, I guess… but what does this mean? 
•  Suppose P = 0.5 (we only have a 50% chance of 

success on any given run) and α = 0.001, we 
only tolerate a 0.1% error 

•  How many runs do we need to get this level of 
confidence? 
•  Only 10! This is a constant multiple 
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RANDOMIZATION 
•  Even if p is 0.1, only a 10% chance of success, 

we only need to run the algorithm 80 times to get 
a 0.001 confidence level  

•  What does this mean? 
•  Randomized algorithms don’t have to be 

complicated, if you can create a reasonable 
guess and can verify it in a short amount of time, 
then you can get good performance just from 
running repeatedly. 
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MINCUT 
•  Suppose there is a graph G(V,E)  
•  Find the two non-empty subgraphs V1 and V2 

such that V1 U V2 = V and the set of edges 
connecting them are minimal 

•  Why do we even care? 
•  The min-cut is the maximum flow, if we are trying 

to connect two cities, the limit of traffic flow 
between nodes in the network 



MINCUT 
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KARGER'S ALGORITHM 

•  Bleh. Garbage. Who has the time? 
•  Can we estimate the min-cut? 

•  What might be an easy estimator? 
•  Contract edges at random! 

•  How many edges will you contract to get two 
subgraphs? 

•  Only |V|-2 
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•  Does this work? 
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KARGER'S ALGORITHM 

•  Does this work? 
•  Success probability of 2/|E| 
•  Run it O(E) times, and you have a bounded 

success rate! 
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RANDOMIZATION CONCLUSION 

•  Good for estimating difficult problems in 
constrained time 

•  Relies on the quality of the guess 
•  Important approach to consider in modern 

computing 



EXAM FORMAT 
•  Two one-hour portions 
•  Material before midterm and from the 

projects are acceptable both days 
•  First, Thursday 9:40 – 10:40 

•  Parallelism and Sorting 
•  Second, Friday 9:40 – 10:40 

•  Graphs and Algorithms 



EXAM FORMAT 
•  We will be our most strict grading yet, don’t 

make any assumptions that aren’t explicit 
•  Analysis work needs to be thorough and 

concrete, recurrences and summations will 
likely be required 

•  Show all of your work. Many algorithms are 
trivial to solve by hand. Just providing “the 
solution” will not earn points. Algorithms are 
about process. 



EXAM FORMAT 
•  A time crunch is likely 

•  There are many topics that need to be 
covered 

•  Get down things that you know, and if you 
don’t make progress move on and come 
back 



TOPICS 
•  Definitions 

•  ADT – Abstract Data Type – Describes a certain 
set of functionality and behavior 

•  e.g. PriorityQueue 
•  Data structure – Theoretical storage method that 

implements an ADT. 
•  e.g. Heap 

•  Implementation – Low-level design decisions that 
are often language dependent 

•  e.g. Using an array for the heap 



TOPICS 
•  Stacks and Queues 

•  LIFO and FIFO ordered storage respectively 
•  Can be implemented with arrays or linked lists 
•  Understand the desired behavior and how to 

implement these structures 



TOPICS 
•  Priority Queues 

•  Insert(key, priority) 
•  findMin() 
•  deleteMin() 
•  changePriority(key, newPriority) 



TOPICS 
•  Heaps 

•  Usually array implementations 
•  Heap property 
•  Complete trees 
•  Runtimes and buildHeap() 



TOPICS 
•  Algorithm analysis 

•  bigO, bigOmega, bigTheta 
•  c and n0 

•  Asymptotic behavior 
•  Memory analysis 
•  Recurrences 
•  Summations  
•  Work and Span 



TOPICS 
•  Dictionary 

•  ADT- insert(k,v), find(k) delete(k) 
•  Many possible underlying data structures 
•  Different runtimes (and support) 



TOPICS 
•  Binary search trees 

•  Best and worst case 
•  Traversals 

•  Balance property – AVL 
•  Rotations and correctness 



TOPICS 
•  Hashtables 

•  Linear, quadratic, secondary hashing 
•  Separate chaining 
•  Load factor and resizing 
•  Primary and Secondary clustering 
•  Runtime and memory constraints 



TOPICS 
•  B+-trees 

•  Temporal and Spatial localities  
•  Pages and their use 
•  Tiered caching 
•  Basic rules and implementations 
•  Signposts and Leaves 



TOPICS 
•  Parallelism 

•  ForkJoinPool 
•  Work and Span 
•  Speed-up 
•  Debugging 
•  Parallel primitives 



TOPICS 
•  Synchronization 

•  Critical Sections 
•  Mutual Exclusion 
•  Deadlock resolution 
•  Course v. Fine-grained locking 
•  Race conditions 



TOPICS 
•  Project Material 

•  Minimax 
•  Alphabeta 
•  Iterators 
•  Debugging 
•  Tries 
•  N-grams 



TOPICS 
•  Graphs 

•  Notation G(V,E) 
•  Traversals 
•  Topological Sorts 
•  Properties 

•  Directed v. Undirected 
•  Dense v. Sparse 
•  Weighted v. Unweighted 
•  Cyclic v. Acyclic 



TOPICS 
•  Graphs 

•  Algorithms 
•  Dijkstra’s – path finding 
•  Prim’s and Kruskal’s – Minimum spanning trees 

•  Know their runtimes and the data structures they 
rely on for those runtimes… 



TOPICS 
•  Union find 

•  ADT – Disjoint sets 
•  Partitions 
•  Weighted Union 
•  Path compression 
•  Uptree – single array representation 



TOPICS 
•  Sorting 

•  Insertion and Selection 
•  Heap, Merge and Quick 
•  Bucket and Radix 

•  Properties 
•  Comparison sorts 
•  Stable 
•  In place 
•  Interruptible (top k) 



TOPICS 
•  Analysis 

•  Lower bound for comparison sorts 
•  Memory usages for sorting 
•  Best and worst case runtimes 
•  Work and Span for parallel algorithms 



TOPICS 
•  Algorithm Design 

•  How can you approach the problem? 
•  Guess and check (Approximation)  
•  Brute Force (Linear Work) 
•  Divide and Conquer 
•  Greedy algorithms (make best decision for a 

local sub-problem) 
•  Randomization, Las Vegas and Monte Carlo 
•  Preprocessing 



FINAL WORDS 
•  Great quarter! 
•  Stressful week 

•  Nothing feels better than walking out of an 
exam and… 

•  Filling out course evaluations! 
•  Course has been tough 

•  But you have learned a lot 



FINAL WORDS 
•  Good luck!  
•  Have a nice “summer”! 


