
CSE 332
AUGUST 18TH – ALGORITHM DESIGN

ASSORTED MINUTIAE
•  Tokens

ASSORTED MINUTIAE
•  Tokens

•  Due by Friday at midnight

ASSORTED MINUTIAE
•  Tokens

•  Due by Friday at midnight
•  Submit the solution and a half-page reflection

showing what lesson you’ve learned from the
exercise

ASSORTED MINUTIAE
•  Tokens

•  Due by Friday at midnight
•  Submit the solution and a half-page reflection

showing what lesson you’ve learned from the
exercise

•  Indicate you will use a token using grinch,
then submit to canvas.

ASSORTED MINUTIAE
•  Tokens

•  Due by Friday at midnight
•  Submit the solution and a half-page reflection

showing what lesson you’ve learned from the
exercise

•  Indicate you will use a token using grinch,
then submit to canvas.

•  If you use a token for multiple things, make it
into a single document

ASSORTED MINUTIAE
•  Course evaluations

•  Very important to this class and this
department

•  Above all, they’re very important to me
•  Should only take ~5 minutes, and it’s very

valuable feedback
•  Only 8 have filled out so far, which is only 5

away from 50% completion… a particularly
low bar in my opinion

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)
•  Linear Solving

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)
•  Linear Solving
•  Divide and Conquer

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)
•  Linear Solving
•  Divide and Conquer
•  Randomization and Approximation

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)
•  Linear Solving
•  Divide and Conquer
•  Randomization and Approximation
•  Dynamic Programming

LINEAR SOLVING
•  Basic linear approach to problem solving

LINEAR SOLVING
•  Basic linear approach to problem solving
•  If the decider creates a set of correct

answers, find one at a time

LINEAR SOLVING
•  Basic linear approach to problem solving
•  If the decider creates a set of correct

answers, find one at a time
•  Selection sort: find the lowest element at

each run through
•  Sometimes, the best solution

•  Find the smallest element of an unsorted
array

ALGORITHM DESIGN
•  Which approach should be used comes

down to how difficult the problem is

ALGORITHM DESIGN
•  Which approach should be used comes

down to how difficult the problem is
•  How do we describe problem difficulty?

•  P : Set of problems that can be solved in
polynomial time

ALGORITHM DESIGN
•  Which approach should be used comes

down to how difficult the problem is
•  How do we describe problem difficulty?

•  P : Set of problems that can be solved in
polynomial time

•  NP : Set of problems that can be verified in
polynomial time

ALGORITHM DESIGN
•  Which approach should be used comes

down to how difficult the problem is
•  How do we describe problem difficulty?

•  P : Set of problems that can be solved in
polynomial time

•  NP : Set of problems that can be verified in
polynomial time

•  EXP: Set of problems that can be solved in
exponential time

ALGORITHM DESIGN
•  Some problems are provably difficult

ALGORITHM DESIGN
•  Some problems are provably difficult

•  Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

ALGORITHM DESIGN
•  Some problems are provably difficult

•  Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

•  At each move, the computer needs to
approximate the best move

ALGORITHM DESIGN
•  Some problems are provably difficult

•  Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

•  At each move, the computer needs to
approximate the best move

•  Certainty always comes at a price

APPROXIMATION DESIGN
•  What is approximated in the chess game?

APPROXIMATION DESIGN
•  What is approximated in the chess game?

•  Board quality – If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

APPROXIMATION DESIGN
•  What is approximated in the chess game?

•  Board quality – If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

•  It is very difficult, branching factor for chess
is ~35

APPROXIMATION DESIGN
•  What is approximated in the chess game?

•  Board quality – If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

•  It is very difficult, branching factor for chess
is ~35

•  Look as many moves into the future as time
allows to see which move yields the best
outcome

APPROXIMATION DESIGN
•  Recognize what piece of information is

costly and useful for your algorithm

APPROXIMATION DESIGN
•  Recognize what piece of information is

costly and useful for your algorithm
•  Consider if there is a cheap way to estimate

that information

APPROXIMATION DESIGN
•  Recognize what piece of information is

costly and useful for your algorithm
•  Consider if there is a cheap way to estimate

that information
•  Does your client have a tolerance for error?
•  Can you map this problem to a similar

problem?
•  “Greedy” algorithms are often approximators

RANDOMIZATION DESIGN
•  Randomization is also another approach

RANDOMIZATION DESIGN
•  Randomization is also another approach

•  Selecting a random pivot in quicksort gives
us more certainty in the runtime

RANDOMIZATION DESIGN
•  Randomization is also another approach

•  Selecting a random pivot in quicksort gives
us more certainty in the runtime

•  This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

RANDOMIZATION DESIGN
•  Randomization is also another approach

•  Selecting a random pivot in quicksort gives
us more certainty in the runtime

•  This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

•  Two types of randomized algorithms
•  Las Vegas – correct result in random time

RANDOMIZATION DESIGN
•  Randomization is also another approach

•  Selecting a random pivot in quicksort gives
us more certainty in the runtime

•  This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

•  Two types of randomized algorithms
•  Las Vegas – correct result in random time
•  Montecarlo – estimated result in deterministic

time

RANDOMIZATION DESIGN
•  Can we make a Montecarlo quicksort?

RANDOMIZATION DESIGN
•  Can we make a Montecarlo quicksort?

•  Runs O(n log n) time, but not guaranteed to
be correct

RANDOMIZATION DESIGN
•  Can we make a Montecarlo quicksort?

•  Runs O(n log n) time, but not guaranteed to
be correct

•  Terminate a random quicksort early!

RANDOMIZATION DESIGN
•  Can we make a Montecarlo quicksort?

•  Runs O(n log n) time, but not guaranteed to
be correct

•  Terminate a random quicksort early!
•  If you haven’t gotten the problem in some

constrained time, just return what you have.

RANDOMIZATION DESIGN
•  How close is a sort?
•  If we say a list is 90% sorted, what do we

mean?

RANDOMIZATION DESIGN
•  How close is a sort?
•  If we say a list is 90% sorted, what do we

mean?
•  90% of elements are smaller than the object

to the right of it?

RANDOMIZATION DESIGN
•  How close is a sort?
•  If we say a list is 90% sorted, what do we

mean?
•  90% of elements are smaller than the object

to the right of it?
•  The longest sorted subsequence is 90% of

the length?

RANDOMIZATION DESIGN
•  How close is a sort?
•  If we say a list is 90% sorted, what do we

mean?
•  90% of elements are smaller than the object

to the right of it?
•  The longest sorted subsequence is 90% of

the length?
•  Analysis for these problems can be very

tricky, but it’s an important approach

RANDOMIZATION
•  Guess and check

RANDOMIZATION
•  Guess and check

•  How bad is it?

RANDOMIZATION
•  Guess and check

•  How bad is it?
•  Necessary for some hard problems

RANDOMIZATION
•  Guess and check

•  How bad is it?
•  Necessary for some hard problems
•  Still can be useful for some easier problems

RANDOMIZATION
•  If an algorithm has a chance P of returning

the correct answer to an NP-complete
problem in O(nk) time

RANDOMIZATION
•  If an algorithm has a chance P of returning

the correct answer to an NP-complete
problem in O(nk) time
•  P is our success probability

RANDOMIZATION
•  If an algorithm has a chance P of returning

the correct answer to an NP-complete
problem in O(nk) time
•  P is our success probability
•  NP-complete means we can check a solution

in O(nk) time, but we can find the exact
solution in O(kn) time – very bad

RANDOMIZATION
•  If an algorithm has a chance P of returning

the correct answer to an NP-complete
problem in O(nk) time
•  P is our success probability
•  NP-complete means we can check a solution

in O(nk) time, but we can find the exact
solution in O(kn) time – very bad

•  Suppose we want to have a confidence
equal to α, how do we get this?

RANDOMIZATION
•  Even if P is low, we can increase our chance

of finding the correct solution by running our
randomized estimator multiple times

RANDOMIZATION
•  Even if P is low, we can increase our chance

of finding the correct solution by running our
randomized estimator multiple times
•  We can verify solutions in polynomial time, so we

can just guess-and-check.

RANDOMIZATION
•  Even if P is low, we can increase our chance

of finding the correct solution by running our
randomized estimator multiple times
•  We can verify solutions in polynomial time, so we

can just guess-and-check.
•  How many times do we need to run our algorithm

to be sure our chance of error is less than α?

RANDOMIZATION
•  Even if P is low, we can increase our chance

of finding the correct solution by running our
randomized estimator multiple times
•  We can verify solutions in polynomial time, so we

can just guess-and-check.
•  How many times do we need to run our algorithm

to be sure our chance of error is less than α?

RANDOMIZATION
(1-p)k = α!

RANDOMIZATION
(1-p)k = α
k*ln(1-p) = ln α
k = (ln α)
 (ln(1-p)!

k = log(1-p) α
 !

RANDOMIZATION
•  Cool, I guess… but what does this mean?

RANDOMIZATION
•  Cool, I guess… but what does this mean?
•  Suppose P = 0.5 (we only have a 50% chance of

success on any given run) and α = 0.001, we
only tolerate a 0.1% error

RANDOMIZATION
•  Cool, I guess… but what does this mean?
•  Suppose P = 0.5 (we only have a 50% chance of

success on any given run) and α = 0.001, we
only tolerate a 0.1% error

•  How many runs do we need to get this level of
confidence?

RANDOMIZATION
•  Cool, I guess… but what does this mean?
•  Suppose P = 0.5 (we only have a 50% chance of

success on any given run) and α = 0.001, we
only tolerate a 0.1% error

•  How many runs do we need to get this level of
confidence?
•  Only 10! This is a constant multiple

RANDOMIZATION
•  In fact, suppose we always want our error to be

0.1%, how does this change with p?

RANDOMIZATION
•  In fact, suppose we always want our error to be

0.1%, how does this change with p?

RANDOMIZATION
•  Even if p is 0.1, only a 10% chance of success,

we only need to run the algorithm 80 times to get
a 0.001 confidence level

RANDOMIZATION
•  Even if p is 0.1, only a 10% chance of success,

we only need to run the algorithm 80 times to get
a 0.001 confidence level

•  What does this mean?

RANDOMIZATION
•  Even if p is 0.1, only a 10% chance of success,

we only need to run the algorithm 80 times to get
a 0.001 confidence level

•  What does this mean?
•  Randomized algorithms don’t have to be

complicated, if you can create a reasonable
guess and can verify it in a short amount of time,
then you can get good performance just from
running repeatedly.

MINCUT
•  Suppose there is a graph G(V,E)

MINCUT
•  Suppose there is a graph G(V,E)
•  Find the two non-empty subgraphs V1 and V2

such that V1 U V2 = V and the set of edges
connecting them are minimal

MINCUT
•  Suppose there is a graph G(V,E)
•  Find the two non-empty subgraphs V1 and V2

such that V1 U V2 = V and the set of edges
connecting them are minimal

•  Why do we even care?

MINCUT
•  Suppose there is a graph G(V,E)
•  Find the two non-empty subgraphs V1 and V2

such that V1 U V2 = V and the set of edges
connecting them are minimal

•  Why do we even care?
•  The min-cut is the maximum flow, if we are trying

to connect two cities, the limit of traffic flow
between nodes in the network

MINCUT

FORD-FULKERSON

FORD-FULKERSON
•  Bleh. Garbage. Who has the time?

FORD-FULKERSON
•  Bleh. Garbage. Who has the time?
•  Can we estimate the min-cut?

FORD-FULKERSON
•  Bleh. Garbage. Who has the time?
•  Can we estimate the min-cut?

•  What might be an easy estimator?

FORD-FULKERSON
•  Bleh. Garbage. Who has the time?
•  Can we estimate the min-cut?

•  What might be an easy estimator?

KARGER'S ALGORITHM

•  Bleh. Garbage. Who has the time?
•  Can we estimate the min-cut?

•  What might be an easy estimator?
•  Contract edges at random!

•  How many edges will you contract to get two
subgraphs?

KARGER'S ALGORITHM

•  Bleh. Garbage. Who has the time?
•  Can we estimate the min-cut?

•  What might be an easy estimator?
•  Contract edges at random!

•  How many edges will you contract to get two
subgraphs?

•  Only |V|-2

KARGER'S ALGORITHM

•  Does this work?

KARGER'S ALGORITHM

•  Does this work?
•  Success probability of 2/|E|

KARGER'S ALGORITHM

•  Does this work?
•  Success probability of 2/|E|
•  Run it O(E) times, and you have a bounded

success rate!

RANDOMIZATION CONCLUSION

•  Good for estimating difficult problems in
constrained time

RANDOMIZATION CONCLUSION

•  Good for estimating difficult problems in
constrained time

•  Relies on the quality of the guess

RANDOMIZATION CONCLUSION

•  Good for estimating difficult problems in
constrained time

•  Relies on the quality of the guess
•  Important approach to consider in modern

computing

EXAM FORMAT
•  Two one-hour portions
•  Material before midterm and from the

projects are acceptable both days
•  First, Thursday 9:40 – 10:40

•  Parallelism and Sorting
•  Second, Friday 9:40 – 10:40

•  Graphs and Algorithms

EXAM FORMAT
•  We will be our most strict grading yet, don’t

make any assumptions that aren’t explicit
•  Analysis work needs to be thorough and

concrete, recurrences and summations will
likely be required

•  Show all of your work. Many algorithms are
trivial to solve by hand. Just providing “the
solution” will not earn points. Algorithms are
about process.

EXAM FORMAT
•  A time crunch is likely

•  There are many topics that need to be
covered

•  Get down things that you know, and if you
don’t make progress move on and come
back

TOPICS
•  Definitions

•  ADT – Abstract Data Type – Describes a certain
set of functionality and behavior

•  e.g. PriorityQueue
•  Data structure – Theoretical storage method that

implements an ADT.
•  e.g. Heap

•  Implementation – Low-level design decisions that
are often language dependent

•  e.g. Using an array for the heap

TOPICS
•  Stacks and Queues

•  LIFO and FIFO ordered storage respectively
•  Can be implemented with arrays or linked lists
•  Understand the desired behavior and how to

implement these structures

TOPICS
•  Priority Queues

•  Insert(key, priority)
•  findMin()
•  deleteMin()
•  changePriority(key, newPriority)

TOPICS
•  Heaps

•  Usually array implementations
•  Heap property
•  Complete trees
•  Runtimes and buildHeap()

TOPICS
•  Algorithm analysis

•  bigO, bigOmega, bigTheta
•  c and n0

•  Asymptotic behavior
•  Memory analysis
•  Recurrences
•  Summations
•  Work and Span

TOPICS
•  Dictionary

•  ADT- insert(k,v), find(k) delete(k)
•  Many possible underlying data structures
•  Different runtimes (and support)

TOPICS
•  Binary search trees

•  Best and worst case
•  Traversals

•  Balance property – AVL
•  Rotations and correctness

TOPICS
•  Hashtables

•  Linear, quadratic, secondary hashing
•  Separate chaining
•  Load factor and resizing
•  Primary and Secondary clustering
•  Runtime and memory constraints

TOPICS
•  B+-trees

•  Temporal and Spatial localities
•  Pages and their use
•  Tiered caching
•  Basic rules and implementations
•  Signposts and Leaves

TOPICS
•  Parallelism

•  ForkJoinPool
•  Work and Span
•  Speed-up
•  Debugging
•  Parallel primitives

TOPICS
•  Synchronization

•  Critical Sections
•  Mutual Exclusion
•  Deadlock resolution
•  Course v. Fine-grained locking
•  Race conditions

TOPICS
•  Project Material

•  Minimax
•  Alphabeta
•  Iterators
•  Debugging
•  Tries
•  N-grams

TOPICS
•  Graphs

•  Notation G(V,E)
•  Traversals
•  Topological Sorts
•  Properties

•  Directed v. Undirected
•  Dense v. Sparse
•  Weighted v. Unweighted
•  Cyclic v. Acyclic

TOPICS
•  Graphs

•  Algorithms
•  Dijkstra’s – path finding
•  Prim’s and Kruskal’s – Minimum spanning trees

•  Know their runtimes and the data structures they
rely on for those runtimes…

TOPICS
•  Union find

•  ADT – Disjoint sets
•  Partitions
•  Weighted Union
•  Path compression
•  Uptree – single array representation

TOPICS
•  Sorting

•  Insertion and Selection
•  Heap, Merge and Quick
•  Bucket and Radix

•  Properties
•  Comparison sorts
•  Stable
•  In place
•  Interruptible (top k)

TOPICS
•  Analysis

•  Lower bound for comparison sorts
•  Memory usages for sorting
•  Best and worst case runtimes
•  Work and Span for parallel algorithms

TOPICS
•  Algorithm Design

•  How can you approach the problem?
•  Guess and check (Approximation)
•  Brute Force (Linear Work)
•  Divide and Conquer
•  Greedy algorithms (make best decision for a

local sub-problem)
•  Randomization, Las Vegas and Monte Carlo
•  Preprocessing

FINAL WORDS
•  Great quarter!
•  Stressful week

•  Nothing feels better than walking out of an
exam and…

•  Filling out course evaluations!
•  Course has been tough

•  But you have learned a lot

FINAL WORDS
•  Good luck!
•  Have a nice “summer”!

