CSE 332

AUGUST 18™ - ALGORITHM DESIGN

ASSORTED MINUTIAE

« Tokens

ASSORTED MINUTIAE

« Tokens

* Due by Friday at midnight

ASSORTED MINUTIAE

« Tokens

* Due by Friday at midnight

* Submit the solution and a half-page reflection
showing what lesson you’ve learned from the
exercise

ASSORTED MINUTIAE

« Tokens

* Due by Friday at midnight

* Submit the solution and a half-page reflection
showing what lesson you’ve learned from the
exercise

 Indicate you will use a token using grinch,
then submit to canvas.

ASSORTED MINUTIAE

« Tokens

* Due by Friday at midnight

* Submit the solution and a half-page reflection
showing what lesson you’ve learned from the
exercise

 Indicate you will use a token using grinch,
then submit to canvas.

* If you use a token for multiple things, make it
into a single document

ASSORTED MINUTIAE

e Course evaluations

» Very important to this class and this
department

* Above all, they're very important to me

* Should only take ~5 minutes, and it's very
valuable feedback

* Only 8 have filled out so far, which is only 5

away from 50% completion... a particularly
low bar in my opinion

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

 Guess and Check

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)
 Linear Solving

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)
 Linear Solving
* Divide and Conquer

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)
 Linear Solving
* Divide and Conquer

« Randomization and Approximation

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)

Linear Solving

Divide and Conquer

Randomization and Approximation

Dynamic Programming

LINEAR SOLVING

« Basic linear approach to problem solving

LINEAR SOLVING

« Basic linear approach to problem solving

* If the decider creates a set of correct
answers, find one at a time

LINEAR SOLVING

« Basic linear approach to problem solving

* If the decider creates a set of correct
answers, find one at a time

« Selection sort: find the lowest element at
each run through

« Sometimes, the best solution

 Find the smallest element of an unsorted
array

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?

« P : Set of problems that can be solved In
polynomial time

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?

« P : Set of problems that can be solved In
polynomial time

* NP : Set of problems that can be verified in
polynomial time

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?
« P : Set of problems that can be solved In

polynomial time

* NP : Set of problems that can be verified in
polynomial time

« EXP: Set of problems that can be solved in
exponential time

ALGORITHM DESIGN

 Some problems are provably difficult

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

* At each move, the computer needs to
approximate the best move

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

* At each move, the computer needs to
approximate the best move

« Certainty always comes at a price

APPROXIMATION DESIGN

 What is approximated in the chess game?

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

* It is very difficult, branching factor for chess
IS ~35

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

* It is very difficult, branching factor for chess
IS ~35
* Look as many moves into the future as time

allows to see which move yields the best
outcome

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

» Consider if there is a cheap way to estimate
that information

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

» Consider if there is a cheap way to estimate
that information

* Does your client have a tolerance for error?

« Can you map this problem to a similar
problem?

« “Greedy” algorithms are often approximators

RANDOMIZATION DESIGN

« Randomization is also another approach

RANDOMIZATION DESIGN

« Randomization is also another approach

« Selecting a random pivot in quicksort gives
us more certainty in the runtime

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

* Two types of randomized algorithms

* Las Vegas — correct result in random time

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

* Two types of randomized algorithms

* Las Vegas — correct result in random time

 Montecarlo — estimated result in deterministic
time

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

* Runs O(n log n) time, but not guaranteed to
be correct

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

* Runs O(n log n) time, but not guaranteed to
be correct

» Terminate a random quicksort early!

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

Runs O(n log n) time, but not guaranteed to
be correct

Terminate a random quicksort early!

If you haven’t gotten the problem in some
constrained time, just return what you have.

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

* The longest sorted subsequence is 90% of
the length?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

* The longest sorted subsequence is 90% of
the length?

* Analysis for these problems can be very
tricky, but it’s an important approach

RANDOMIZATION

« Guess and check

RANDOMIZATION

« Guess and check

« How bad is it?

RANDOMIZATION

« Guess and check

 How bad is it?
* Necessary for some hard problems

RANDOMIZATION

« Guess and check

 How bad is it?
* Necessary for some hard problems
 Still can be useful for some easier problems

RANDOMIZATION

 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

RANDOMIZATION

 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

* P is our success probability

RANDOMIZATION

 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

* P is our success probability

* NP-complete means we can check a solution
in O(nk) time, but we can find the exact
solution in O(k") time — very bad

RANDOMIZATION

 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

* P is our success probability

* NP-complete means we can check a solution
in O(nk) time, but we can find the exact
solution in O(k") time — very bad

« Suppose we want to have a confidence
equal to a, how do we get this?

RANDOMIZATION

« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

RANDOMIZATION

« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

* We can verify solutions in polynomial time, so we
can just guess-and-check.

RANDOMIZATION

« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

* We can verify solutions in polynomial time, so we
can just guess-and-check.

* How many times do we need to run our algorithm
to be sure our chance of error is less than a?

RANDOMIZATION

« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

* We can verify solutions in polynomial time, so we
can just guess-and-check.

* How many times do we need to run our algorithm
to be sure our chance of error is less than a?

RANDOMIZATION

(1-p)* = a

RANDOMIZATION

(1-p)* = a
k*1ln(l-p) = 1ln a
k = (1n q)

RANDOMIZATION

« Cool, I guess... but what does this mean?

RANDOMIZATION

« Cool, I guess... but what does this mean?

« Suppose P = 0.5 (we only have a 50% chance of
success on any given run) and a = 0.001, we
only tolerate a 0.1% error

RANDOMIZATION

« Cool, I guess... but what does this mean?

« Suppose P = 0.5 (we only have a 50% chance of
success on any given run) and a = 0.001, we
only tolerate a 0.1% error

« How many runs do we need to get this level of
confidence?

RANDOMIZATION

« Cool, I guess... but what does this mean?

« Suppose P = 0.5 (we only have a 50% chance of
success on any given run) and a = 0.001, we
only tolerate a 0.1% error

« How many runs do we need to get this level of
confidence?

* Only 10! This is a constant multiple

RANDOMIZATION

* In fact, suppose we always want our error to be
0.1%, how does this change with p?

RANDOMIZATION

* In fact, suppose we always want our error to be
0.1%, how does this change with p?

= I|
| |

|
\
\
D! \

40 ¢ \

RANDOMIZATION

« Evenifpis 0.1, only a 10% chance of success,
we only need to run the algorithm 80 times to get
a 0.001 confidence level

RANDOMIZATION

« Evenifpis 0.1, only a 10% chance of success,
we only need to run the algorithm 80 times to get

a 0.001 confidence level

« What does this mean?

RANDOMIZATION

« Evenifpis 0.1, only a 10% chance of success,
we only need to run the algorithm 80 times to get

a 0.001 confidence level

« What does this mean?

- Randomized algorithms don't have to be
complicated, if you can create a reasonable
guess and can verify it in a short amount of time,
then you can get good performance just from
running repeatedly.

MINCUT

« Suppose there is a graph G(V,E)

MINCUT

« Suppose there is a graph G(V,E)

* Find the two non-empty subgraphs V, and V,
such that V, U V, =V and the set of edges
connecting them are minimal

MINCUT

« Suppose there is a graph G(V,E)

* Find the two non-empty subgraphs V, and V,
such that V, U V, =V and the set of edges
connecting them are minimal

- Why do we even care?

MINCUT

« Suppose there is a graph G(V,E)

* Find the two non-empty subgraphs V, and V,
such that V, U V, =V and the set of edges
connecting them are minimal

« Why do we even care?

* The min-cut is the maximum flow, if we are trying
to connect two cities, the limit of traffic flow
between nodes in the network

Max-Flow Min-Cut Theorem

MAX-FLOW MIN-CUT THEOREM (Ford-Fulkerson, 1956): In any
network, the value of the max flow is equal to the value of the min cut.

"Good characterization."

9

9 (5
10 1 9
10 4 0 15 150 10
8 xT/ 10
4 10
6

10

Proof IOU.

o &

Cut capacity =28 Tk Flow value = 28

FORD-FULKERSON

Algorithm [edit)

Let G(V, E) be a graph, and for each edge from u to v, let ¢(u, v) be the capacity and f(u, v) be the flow. We want to find the maximum flow from the source s to
the sink t. After every step in the algorithm the following is maintained:

Capacity

Y(u,v) € E f(u,v) < c(u,v The flow along an edge can not exceed its capacity.
consiraints: (u,v) € E f(u,v) < c(u,v) g an edg pacity.
Skew symmetry: V(u,v) € E f(u,v) = — f(v,u) The net flow from u to ¥ must be the opposite of the net flow from v to u (see example).
Flow VueV:u#sandu#t= Z f(u, w) =0 That is, unless u is 8 or t. The net flow to a node is zero, except for the source, which
conservation: weV "produces” flow, and the sink, which "consumes" flow.
Value(f): (z): f (s, u) = (z): f (v, t) That is, the flow leaving from 8 must be equal to the flow arriving at ¢.

su)el vt)eE

This means that the flow through the network is a legal flow after each round in the algorithm. We define the residual network G f(V, Ef) to be the network with
capacity ¢f(u,v) = ¢(u,v) — f(u,v) and no flow. Notice that it can happen that a flow from v to u is allowed in the residual network, though disallowed in the
original network: if f(u,v) > 0 and ¢(v,u) = 0 then ¢f(v,u) = c(v,u) — f(v,u) = f(u,v) > 0.
Algorithm Ford-Fulkerson
Inputs Given a Network G = (V, E) with flow capacity ¢, a source node s, and a sink node ¢
Output Compute a flow f from s to ¢ of maximum value
1. f(u,v) + 0 for all edges (u, v)
2. While there is a path p from s to ¢ in G4, such that ¢ (u, v) > 0 for all edges (u,v) € p:
1. Find ¢¢(p) = min{cs(u,v) : (u,v) € p}
2. For each edge (u,v) € p
1. f(u,v) « f(u,v) + c;(p) (Send flow along the path)
2. f(v,u) « f(v,u) — cs(p) (The flow might be “returned" later)

The path in step 2 can be found with for example a breadth-first search or a depth-first search in G f (V, E f). If you use the former, the algorithm is called
Edmonds—Karp.

FORD-FULKERSON

« Bleh. Garbage. Who has the time?

FORD-FULKERSON

« Bleh. Garbage. Who has the time?

« Can we estimate the min-cut?

FORD-FULKERSON

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?

FORD-FULKERSON

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?

KARGER'S ALGORITHM

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?
« Contract edges at random!

* How many edges will you contract to get two
subgraphs?

vl grgvaravdy i3 S 4 S 433

KARGER'S ALGORITHM

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?
« Contract edges at random!

* How many edges will you contract to get two
subgraphs?
* Only |V]-2

vl grgvaravdy i3 S 4 S 433

KARGER'S ALGORITHM

 Does this work?

KARGER'S ALGORITHM

 Does this work?

* Success probability of 2/|E]

KARGER'S ALGORITHM

 Does this work?

* Success probability of 2/|E]

* Run it O(E) times, and you have a bounded
success rate!

RANDOMIZATION CONCLUSION

« Good for estimating difficult problems in
constrained time

RANDOMIZATION CONCLUSION

« Good for estimating difficult problems in
constrained time

* Relies on the quality of the guess

RANDOMIZATION CONCLUSION

« Good for estimating difficult problems in
constrained time

* Relies on the quality of the guess

 Important approach to consider in modern
computing

EXAM FORMAT

 Two one-hour portions

« Material before midterm and from the
projects are acceptable both days

* First, Thursday 9:40 — 10:40

 Parallelism and Sorting
« Second, Friday 9:40 —10:40

» Graphs and Algorithms

EXAM FORMAT

* We will be our most strict grading yet, don’t
make any assumptions that aren’t explicit

* Analysis work needs to be thorough and
concrete, recurrences and summations will
likely be required

« Show all of your work. Many algorithms are
trivial to solve by hand. Just providing “the
solution” will not earn points. Algorithms are
about process.

EXAM FORMAT

* A time crunch is likely

* There are many topics that need to be
covered

* Get down things that you know, and if you

don’t make progress move on and come
back

TOPICS

* Definitions
 ADT — Abstract Data Type — Describes a certain

set of functionality and behavior
* e.g. PriorityQueue

- Data structure — Theoretical storage method that
Implements an ADT.

* e.g. Heap

* Implementation — Low-level design decisions that
are often language dependent

* e.g. Using an array for the heap

TOPICS

« Stacks and Queues

« LIFO and FIFO ordered storage respectively
« Can be implemented with arrays or linked lists

 Understand the desired behavior and how to
Implement these structures

TOPICS

 Priority Queues
* Insert(key, priority)
* findMin()
+ deleteMin()
» changePriority(key, newPriority)

TOPICS

* Heaps
« Usually array implementations
* Heap property
* Complete trees
* Runtimes and buildHeap()

TOPICS

* Algorithm analysis

bigO, bigOmega, bigTheta
c and n,

Asymptotic behavior
Memory analysis
Recurrences

Summations

Work and Span

TOPICS

* Dictionary
* ADT- insert(k,v), find(k) delete(k)
* Many possible underlying data structures
 Different runtimes (and support)

TOPICS

* Binary search trees

 Best and worst case
* Traversals
* Balance property — AVL

 Rotations and correctness

TOPICS

« Hashtables

 Linear, quadratic, secondary hashing
Separate chaining

 Load factor and resizing

* Primary and Secondary clustering

* Runtime and memory constraints

TOPICS

« B+-trees

- Temporal and Spatial localities

- Pages and their use

 Tiered caching

» Basic rules and implementations
 Signposts and Leaves

TOPICS

 Parallelism

ForkJoinPool
Work and Span
Speed-up
Debugging
Parallel primitives

TOPICS

« Synchronization

Critical Sections

Mutual Exclusion

Deadlock resolution

Course v. Fine-grained locking
Race conditions

TOPICS

* Project Material
* Minimax
* Alphabeta
* lterators
- Debugging
* Tries
* N-grams

TOPICS

* Graphs
* Notation G(V,E)
» Traversals
» Topological Sorts

* Properties
* Directed v. Undirected
* Dense v. Sparse
» Weighted v. Unweighted
« Cyclic v. Acyclic

TOPICS

 Graphs

 Algorithms
* Dijkstra’s — path finding
* Prim’s and Kruskal's — Minimum spanning trees

« Know their runtimes and the data structures they
rely on for those runtimes...

TOPICS

 Union find

* ADT - Disjoint sets
 Partitions

* Weighted Union

« Path compression

» Uptree — single array representation

TOPICS

« Sorting

* |nsertion and Selection

- Heap, Merge and Quick

» Bucket and Radix
 Properties

« Comparison sorts
- Stable

* In place

* Interruptible (top k)

TOPICS

* Analysis

Lower bound for comparison sorts
Memory usages for sorting

Best and worst case runtimes

Work and Span for parallel algorithms

TOPICS

* Algorithm Design

* How can you approach the problem?
» Guess and check (Approximation)
« Brute Force (Linear Work)
* Divide and Conquer

« Greedy algorithms (make best decision for a
local sub-problem)

- Randomization, Las Vegas and Monte Carlo
* Preprocessing

FINAL WORDS

* Great quarter!

o Stressful week

* Nothing feels better than walking out of an
exam and...

* Filling out course evaluations!
« Course has been tough

* But you have learned a lot

FINAL WORDS

« Good luck!

« Have a nice “summer’!

