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ASSORTED MINUTIAE

« Tokens

* Due by Friday at midnight

* Submit the solution and a half-page reflection
showing what lesson you’ve learned from the
exercise

 Indicate you will use a token using grinch,
then submit to canvas.

* If you use a token for multiple things, make it
into a single document




ASSORTED MINUTIAE

e Course evaluations

» Very important to this class and this
department

* Above all, they're very important to me

* Should only take ~5 minutes, and it's very
valuable feedback

* Only 8 have filled out so far, which is only 5

away from 50% completion... a particularly
low bar in my opinion
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« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)

Linear Solving

Divide and Conquer

Randomization and Approximation

Dynamic Programming
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LINEAR SOLVING

« Basic linear approach to problem solving

* If the decider creates a set of correct
answers, find one at a time

« Selection sort: find the lowest element at
each run through

« Sometimes, the best solution

 Find the smallest element of an unsorted
array
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ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?
« P : Set of problems that can be solved In

polynomial time

* NP : Set of problems that can be verified in
polynomial time

« EXP: Set of problems that can be solved in
exponential time
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 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

* At each move, the computer needs to
approximate the best move

« Certainty always comes at a price
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APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

* It is very difficult, branching factor for chess
IS ~35
* Look as many moves into the future as time

allows to see which move yields the best
outcome
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 Recognize what piece of information is
costly and useful for your algorithm

» Consider if there is a cheap way to estimate
that information

* Does your client have a tolerance for error?

« Can you map this problem to a similar
problem?

« “Greedy” algorithms are often approximators
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« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

* Two types of randomized algorithms

* Las Vegas — correct result in random time

 Montecarlo — estimated result in deterministic
time
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« Can we make a Montecarlo quicksort?

Runs O(n log n) time, but not guaranteed to
be correct

Terminate a random quicksort early!

If you haven’t gotten the problem in some
constrained time, just return what you have.
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 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

* The longest sorted subsequence is 90% of
the length?

* Analysis for these problems can be very
tricky, but it’s an important approach
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« Guess and check

 How bad is it?
* Necessary for some hard problems
 Still can be useful for some easier problems
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RANDOMIZATION

 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

* P is our success probability

* NP-complete means we can check a solution
in O(nk) time, but we can find the exact
solution in O(k") time — very bad

« Suppose we want to have a confidence
equal to a, how do we get this?
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« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

* We can verify solutions in polynomial time, so we
can just guess-and-check.

* How many times do we need to run our algorithm
to be sure our chance of error is less than a?
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(1-p)* = a
k*1ln(l-p) = 1ln a
k = (1n q)
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« Cool, I guess... but what does this mean?

« Suppose P = 0.5 (we only have a 50% chance of
success on any given run) and a = 0.001, we
only tolerate a 0.1% error

« How many runs do we need to get this level of
confidence?

* Only 10! This is a constant multiple
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* In fact, suppose we always want our error to be
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* In fact, suppose we always want our error to be
0.1%, how does this change with p?
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« Evenifpis 0.1, only a 10% chance of success,
we only need to run the algorithm 80 times to get

a 0.001 confidence level

« What does this mean?

- Randomized algorithms don't have to be
complicated, if you can create a reasonable
guess and can verify it in a short amount of time,
then you can get good performance just from
running repeatedly.
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MINCUT

« Suppose there is a graph G(V,E)

* Find the two non-empty subgraphs V, and V,
such that V, U V, =V and the set of edges
connecting them are minimal

« Why do we even care?

* The min-cut is the maximum flow, if we are trying
to connect two cities, the limit of traffic flow
between nodes in the network




Max-Flow Min-Cut Theorem

MAX-FLOW MIN-CUT THEOREM (Ford-Fulkerson, 1956): In any
network, the value of the max flow is equal to the value of the min cut.

"Good characterization."
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FORD-FULKERSON

Algorithm [edit)

Let G(V, E) be a graph, and for each edge from u to v, let ¢(u, v) be the capacity and f(u, v) be the flow. We want to find the maximum flow from the source s to
the sink t. After every step in the algorithm the following is maintained:

Capacity

Y(u,v) € E f(u,v) < c(u,v The flow along an edge can not exceed its capacity.
consiraints: (u,v) € E f(u,v) < c(u,v) g an edg pacity.
Skew symmetry: V(u,v) € E f(u,v) = — f(v,u) The net flow from u to ¥ must be the opposite of the net flow from v to u (see example).
Flow VueV:u#sandu#t= Z f(u, w) =0 That is, unless u is 8 or t. The net flow to a node is zero, except for the source, which
conservation: weV "produces” flow, and the sink, which "consumes" flow.
Value(f): ( z): f (s, u) = ( z): f (v, t) That is, the flow leaving from 8 must be equal to the flow arriving at ¢.

su)el vt)eE

This means that the flow through the network is a legal flow after each round in the algorithm. We define the residual network G f(V, Ef) to be the network with
capacity ¢f(u,v) = ¢(u,v) — f(u,v) and no flow. Notice that it can happen that a flow from v to u is allowed in the residual network, though disallowed in the
original network: if f(u,v) > 0 and ¢(v,u) = 0 then ¢f(v,u) = c(v,u) — f(v,u) = f(u,v) > 0.
Algorithm Ford-Fulkerson
Inputs Given a Network G = (V, E) with flow capacity ¢, a source node s, and a sink node ¢
Output Compute a flow f from s to ¢ of maximum value
1. f(u,v) + 0 for all edges (u, v)
2. While there is a path p from s to ¢ in G4, such that ¢ (u, v) > 0 for all edges (u,v) € p:
1. Find ¢¢(p) = min{cs(u,v) : (u,v) € p}
2. For each edge (u,v) € p
1. f(u,v) « f(u,v) + c;(p) (Send flow along the path)
2. f(v,u) « f(v,u) — cs(p) (The flow might be “returned" later)

The path in step 2 can be found with for example a breadth-first search or a depth-first search in G f (V, E f). If you use the former, the algorithm is called
Edmonds—Karp.
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« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?
« Contract edges at random!

* How many edges will you contract to get two
subgraphs?
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KARGER'S ALGORITHM

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?
« Contract edges at random!

* How many edges will you contract to get two
subgraphs?
* Only |V]-2

vl grgvaravdy i3 S 4 S 433
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KARGER'S ALGORITHM

 Does this work?

* Success probability of 2/|E]

* Run it O(E) times, and you have a bounded
success rate!
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RANDOMIZATION CONCLUSION

« Good for estimating difficult problems in
constrained time

* Relies on the quality of the guess

 Important approach to consider in modern
computing




EXAM FORMAT

 Two one-hour portions

« Material before midterm and from the
projects are acceptable both days

* First, Thursday 9:40 — 10:40

 Parallelism and Sorting
« Second, Friday 9:40 —10:40

» Graphs and Algorithms




EXAM FORMAT

* We will be our most strict grading yet, don’t
make any assumptions that aren’t explicit

* Analysis work needs to be thorough and
concrete, recurrences and summations will
likely be required

« Show all of your work. Many algorithms are
trivial to solve by hand. Just providing “the
solution” will not earn points. Algorithms are
about process.




EXAM FORMAT

* A time crunch is likely

* There are many topics that need to be
covered

* Get down things that you know, and if you

don’t make progress move on and come
back




TOPICS

* Definitions
 ADT — Abstract Data Type — Describes a certain

set of functionality and behavior
* e.g. PriorityQueue

- Data structure — Theoretical storage method that
Implements an ADT.

* e.g. Heap

* Implementation — Low-level design decisions that
are often language dependent

* e.g. Using an array for the heap




TOPICS

« Stacks and Queues

« LIFO and FIFO ordered storage respectively
« Can be implemented with arrays or linked lists

 Understand the desired behavior and how to
Implement these structures




TOPICS

 Priority Queues
* Insert(key, priority)
* findMin()
+ deleteMin()
» changePriority(key, newPriority)




TOPICS

* Heaps
« Usually array implementations
* Heap property
* Complete trees
* Runtimes and buildHeap()




TOPICS

* Algorithm analysis

bigO, bigOmega, bigTheta
c and n,

Asymptotic behavior
Memory analysis
Recurrences

Summations

Work and Span




TOPICS

* Dictionary
* ADT- insert(k,v), find(k) delete(k)
* Many possible underlying data structures
 Different runtimes (and support)




TOPICS

* Binary search trees

 Best and worst case
* Traversals
* Balance property — AVL

 Rotations and correctness




TOPICS

« Hashtables

 Linear, quadratic, secondary hashing
Separate chaining

 Load factor and resizing

* Primary and Secondary clustering

* Runtime and memory constraints




TOPICS

« B+-trees

- Temporal and Spatial localities

- Pages and their use

 Tiered caching

» Basic rules and implementations
 Signposts and Leaves




TOPICS

 Parallelism

ForkJoinPool
Work and Span
Speed-up
Debugging
Parallel primitives




TOPICS

« Synchronization

Critical Sections

Mutual Exclusion

Deadlock resolution

Course v. Fine-grained locking
Race conditions




TOPICS

* Project Material
*  Minimax
* Alphabeta
* lterators
- Debugging
* Tries
* N-grams




TOPICS

* Graphs
* Notation G(V,E)
» Traversals
» Topological Sorts

* Properties
* Directed v. Undirected
* Dense v. Sparse
» Weighted v. Unweighted
« Cyclic v. Acyclic




TOPICS

 Graphs

 Algorithms
* Dijkstra’s — path finding
* Prim’s and Kruskal's — Minimum spanning trees

« Know their runtimes and the data structures they
rely on for those runtimes...




TOPICS

 Union find

* ADT - Disjoint sets
 Partitions

* Weighted Union

« Path compression

» Uptree — single array representation




TOPICS

« Sorting

* |nsertion and Selection

- Heap, Merge and Quick

» Bucket and Radix
 Properties

« Comparison sorts
- Stable

* In place

* Interruptible (top k)




TOPICS

* Analysis

Lower bound for comparison sorts
Memory usages for sorting

Best and worst case runtimes

Work and Span for parallel algorithms




TOPICS

* Algorithm Design

* How can you approach the problem?
» Guess and check (Approximation)
« Brute Force (Linear Work)
* Divide and Conquer

« Greedy algorithms (make best decision for a
local sub-problem)

- Randomization, Las Vegas and Monte Carlo
* Preprocessing




FINAL WORDS

* Great quarter!

o Stressful week

* Nothing feels better than walking out of an
exam and...

* Filling out course evaluations!
« Course has been tough

* But you have learned a lot




FINAL WORDS

« Good luck!

« Have a nice “summer’!




