CSE 332

JUNE 30TH - AMORTIZED ANALYSIS

Tokens

- Tokens
 - 3 tokens

- Tokens
 - 3 tokens
 - Opportunity to redo an exercise

- Tokens
 - 3 tokens
 - Opportunity to redo an exercise
 - One late day on a project

- Tokens
 - 3 tokens
 - Opportunity to redo an exercise
 - One late day on a project
- Website should be all accurate now

- Tokens
 - 3 tokens
 - Opportunity to redo an exercise
 - One late day on a project
- Website should be all accurate now
- P1 Due Wednesday now

Recurrences

TODAY

- Recurrences
- Master Theorem

TODAY

- Recurrences
- Master Theorem
- Amortized Analysis

TODAY

- Recurrences
- Master Theorem
- Amortized Analysis
- Project checkpoint

- Algorithm Analysis
 - Asymptotic behavior

- Algorithm Analysis
 - Asymptotic behavior
- Loops and iterations

- Algorithm Analysis
 - Asymptotic behavior
- Loops and iterations
- Recursive functions

- Algorithm Analysis
 - Asymptotic behavior
- Loops and iterations
- Recursive functions
 - Recurrence relations

On Wednesday, we showed the formal recurrence approach

- On Wednesday, we showed the formal recurrence approach
 - Break into recursive, non-recursive

- On Wednesday, we showed the formal recurrence approach
 - Break into recursive, non-recursive
 - Compute non-recursive computation time

- On Wednesday, we showed the formal recurrence approach
 - Break into recursive, non-recursive
 - Compute non-recursive computation time
 - Produce the recurrence

- On Wednesday, we showed the formal recurrence approach
 - Break into recursive, non-recursive
 - Compute non-recursive computation time
 - Produce the recurrence
 - Roll out the recurrence and produce the closed form

- On Wednesday, we showed the formal recurrence approach
 - Break into recursive, non-recursive
 - Compute non-recursive computation time
 - Produce the recurrence
 - Roll out the recurrence and produce the closed form
 - Upper-bound the closed form with bigO notation

 While this process is important, we can save some steps if all we care about is the upper bound

- While this process is important, we can save some steps if all we care about is the upper bound
 - bigO notation eliminates the need for constants

- While this process is important, we can save some steps if all we care about is the upper bound
 - bigO notation eliminates the need for constants
 - Lots of our messing around with c₀ and c₁ doesn't come through to the solution

- While this process is important, we can save some steps if all we care about is the upper bound
 - bigO notation eliminates the need for constants
 - Lots of our messing around with c₀ and c₁ doesn't come through to the solution

- Merge sort
 - Separate the data into individual pieces

- Separate the data into individual pieces
- Merge the pieces into larger and larger ones until the data is sorted

- Separate the data into individual pieces
- Merge the pieces into larger and larger ones until the data is sorted
- What is the recurrence here?

- Separate the data into individual pieces
- Merge the pieces into larger and larger ones until the data is sorted
- What is the recurrence here?
 - T(n) = O(n) + 2T(n/2) for n>1

- Merge sort
 - T(n) = O(1) for n < 2
 - T(n) = O(n) + 2T(n/2) for n>1

- T(n) = O(1) for n < 2
- T(n) = O(n) + 2T(n/2) for n>1
- $T(n) = c_0 + c_1^* n + 2T(n/2)$

- T(n) = O(1) for n < 2
- T(n) = O(n) + 2T(n/2) for n>1
- $T(n) = c_0 + c_1^* n + 2T(n/2)$
- $T(n) = c_0 + c_1^* n + 2^* c_0 + 2^* c_1^* n/2 + 4T(n/4)$

- T(n) = O(1) for n < 2
- T(n) = O(n) + 2T(n/2) for n>1
- $T(n) = c_0 + c_1 n + 2T(n/2)$
- $T(n) = c_0 + c_1^* n + 2^* c_0 + 2^* c_1^* n/2 + 4T(n/4)$
- $T(n) = 3*c_0 + 2*n*c_1 + 4T(n/4)$

- T(n) = O(1) for n < 2
- T(n) = O(n) + 2T(n/2) for n>1
- $T(n) = c_0 + c_1^* n + 2T(n/2)$
- $T(n) = c_0 + c_1^* n + 2^* c_0 + 2^* c_1^* n/2 + 4T(n/4)$
- $T(n) = 3*c_0 + 2*n*c_1 + 4T(n/4)$
- $T(n) = 3*c_0 + 2*n*c_1 + 4*c0 + 4*c1*n/4 + 8T(n/8)$

- T(n) = O(1) for n < 2
- T(n) = O(n) + 2T(n/2) for n>1
- $T(n) = c_0 + c_1^* n + 2T(n/2)$
- $T(n) = c_0 + c_1 n + 2c_0 + 2c_1 n/2 + 4T(n/4)$
- $T(n) = 3*c_0 + 2*n*c_1 + 4T(n/4)$
- $T(n) = 3*c_0 + 2*n*c_1 + 4*c0 + 4*c1*n/4 + 8T(n/8)$
- •
Merge sort

- T(n) = O(1) for n < 2
- T(n) = O(n) + 2T(n/2) for n>1
- $T(n) = c_0 + c_1 n + 2T(n/2)$
- $T(n) = c_0 + c_1 n + 2c_0 + 2c_1 n/2 + 4T(n/4)$

•
$$T(n) = 3*c_0 + 2*n*c_1 + 4T(n/4)$$

- $T(n) = 3*c_0 + 2*n*c_1 + 4*c0 + 4*c1*n/4 + 8T(n/8)$
- •
- We can derive the pattern this way, but it isn't necessarily intuitive

- Merge sort
 - Consider the problem graphically

• Merge sort

- Consider the problem graphically
- Each recursive call is a node in a tree

• Merge sort

- Consider the problem graphically
- Each recursive call is a node in a tree
- Helpful for logarithmic patterns and when each run calls itself more than once

- Master theorem
 - These recurrences all follow a similar pattern

- These recurrences all follow a similar pattern
- Therefore, if you can produce a recurrence, there is actually a procedural way to produce solutions

- These recurrences all follow a similar pattern
- Therefore, if you can produce a recurrence, there is actually a procedural way to produce solutions
- If T(n) = a*T(n/b)+n^c for n > n₀ and if the base case is a constant

- These recurrences all follow a similar pattern
- Therefore, if you can produce a recurrence, there is actually a procedural way to produce solutions
- If T(n) = a*T(n/b)+n^c for n > n₀ and if the base case is a constant
 - Case 1: $\log_{b}(a) < c$: T(n) = O(n^c)
 - Case 2: $\log_{b}(a) = c$: T(n) = O(n^c Ig n)
 - Case 3: $\log_{b}(a) > c$: $T(n) = O(n^{\log a})$

- These recurrences all follow a similar pattern
- Therefore, if you can produce a recurrence, there is actually a procedural way to produce solutions
- If T(n) = a*T(n/b)+n^c for n > n₀ and if the base case is a constant
 - Case 1: $\log_{b}(a) < c$: T(n) = O(n^c)
 - Case 2: $\log_{b}(a) = c$: $T(n) = O(n^{c} \lg n)$
 - Case 3: $\log_{b}(a) > c$: $T(n) = O(n^{\log a})$
- Verify with merge sort: a = 2, b = 2, c = 1

• Recurrences come up all the time

• Recurrences come up all the time

 Analyze methods and iterative approaches through the normal methods

• Recurrences come up all the time

- Analyze methods and iterative approaches through the normal methods
- Recursive functions use a recurrence

Recurrences come up all the time

- Analyze methods and iterative approaches through the normal methods
- Recursive functions use a recurrence
- Possible to get to bigO solution quickly

• Recurrences come up all the time

- Analyze methods and iterative approaches through the normal methods
- Recursive functions use a recurrence
- Possible to get to bigO solution quickly
- Usually for worst-case analysis

- Final analysis type
 - Worst-case

- Final analysis type
 - Worst-case
 - Consider adding to an unsorted array

- Worst-case
 - Consider adding to an unsorted array
 - Resizing is the costly O(n) operation

- Worst-case
 - Consider adding to an unsorted array
 - Resizing is the costly O(n) operation
 - This occurs in predictable ways

- Worst-case
 - Consider adding to an unsorted array
 - Resizing is the costly O(n) operation
 - This occurs in predictable ways
 - Do these types of operations really slow down the function?

Adding to unsorted array

- Adding to unsorted array
 - How long does it take to add n elements into the array?

- Adding to unsorted array
 - How long does it take to add n elements into the array?
 - Let's say the array is full with *n* elements and we add *n* more

- Adding to unsorted array
 - How long does it take to add n elements into the array?
 - Let's say the array is full with *n* elements and we add *n* more
 - It takes n-1*O(1) + 1*O(n) = O(n)

- Adding to unsorted array
 - How long does it take to add n elements into the array?
 - Let's say the array is full with *n* elements and we add *n* more
 - It takes n-1*O(1) + 1*O(n) = O(n)
 - Amortized over the whole set of operations, each one is only O(1) time

- Adding to unsorted array
 - How long does it take to add n elements into the array?
 - Let's say the array is full with *n* elements and we add *n* more
 - It takes n-1*O(1) + 1*O(n) = O(n)
 - Amortized over the whole set of operations, each one is only O(1) time
 - What does this depend on?

- Adding to unsorted array
 - How long does it take to add n elements into the array?
 - Let's say the array is full with *n* elements and we add *n* more
 - It takes n-1*O(1) + 1*O(n) = O(n)
 - Amortized over the whole set of operations, each one is only O(1) time
 - What does this depend on?
 - Doubling the array

- Adding to unsorted array
 - What if we only add some constant number to the array?
 - Let's resize and add 10,000 elements every time
 - How long does it take to add *n* elements?
 - n-n/10,000*O(1) + n/10,000*O(n)

- Adding to unsorted array
 - What if we only add some constant number to the array?
 - Let's resize and add 10,000 elements every time
 - How long does it take to add *n* elements?
 - $n-n/10,000*O(1) + n/10,000*O(n) = O(n^2)$
 - This is for any constant, regardless of how large

Get into your project groups

- Get into your project groups
- We'll be coming around to meet with you for a few minutes

- Get into your project groups
- We'll be coming around to meet with you for a few minutes
 - Have you made it through part 1?
 - How has the team been working?
 - Have you started part 2?

- Get into your project groups
- We'll be coming around to meet with you for a few minutes
 - Have you made it through part 1?
 - How has the team been working?
 - Have you started part 2?
- Good opportunity to make sure everything is on the right track

- Get into your project groups
- We'll be coming around to meet with you for a few minutes
 - Have you made it through part 1?
 - How has the team been working?
 - Have you started part 2?
- Good opportunity to make sure everything is on the right track
- Once one of us has talked with you, you're free to go

• Dictionaries

- Dictionaries
 - Binary Search Trees
 - Balancing