
CSE 332
JUNE 30TH – AMORTIZED ANALYSIS

ADMINISTRATIVE
•  Tokens

ADMINISTRATIVE
•  Tokens

•  3 tokens

ADMINISTRATIVE
•  Tokens

•  3 tokens
•  Opportunity to redo an exercise

ADMINISTRATIVE
•  Tokens

•  3 tokens
•  Opportunity to redo an exercise
•  One late day on a project

ADMINISTRATIVE
•  Tokens

•  3 tokens
•  Opportunity to redo an exercise
•  One late day on a project

•  Website should be all accurate now

ADMINISTRATIVE
•  Tokens

•  3 tokens
•  Opportunity to redo an exercise
•  One late day on a project

•  Website should be all accurate now
•  P1 Due Wednesday now

TODAY
•  Recurrences

TODAY
•  Recurrences
•  Master Theorem

TODAY
•  Recurrences
•  Master Theorem
•  Amortized Analysis

TODAY
•  Recurrences
•  Master Theorem
•  Amortized Analysis
•  Project checkpoint

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  Loops and iterations

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  Loops and iterations
•  Recursive functions

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  Loops and iterations
•  Recursive functions

•  Recurrence relations

ANALYSIS
•  On Wednesday, we showed the formal

recurrence approach

ANALYSIS
•  On Wednesday, we showed the formal

recurrence approach
•  Break into recursive, non-recursive

ANALYSIS
•  On Wednesday, we showed the formal

recurrence approach
•  Break into recursive, non-recursive
•  Compute non-recursive computation time

ANALYSIS
•  On Wednesday, we showed the formal

recurrence approach
•  Break into recursive, non-recursive
•  Compute non-recursive computation time
•  Produce the recurrence

ANALYSIS
•  On Wednesday, we showed the formal

recurrence approach
•  Break into recursive, non-recursive
•  Compute non-recursive computation time
•  Produce the recurrence
•  Roll out the recurrence and produce the closed

form

ANALYSIS
•  On Wednesday, we showed the formal

recurrence approach
•  Break into recursive, non-recursive
•  Compute non-recursive computation time
•  Produce the recurrence
•  Roll out the recurrence and produce the closed

form
•  Upper-bound the closed form with bigO notation

ANALYSIS
•  While this process is important, we can save

some steps if all we care about is the upper
bound

ANALYSIS
•  While this process is important, we can save

some steps if all we care about is the upper
bound

•  bigO notation eliminates the need for constants

ANALYSIS
•  While this process is important, we can save

some steps if all we care about is the upper
bound

•  bigO notation eliminates the need for constants
•  Lots of our messing around with c0 and c1 doesn’t

come through to the solution

ANALYSIS
•  While this process is important, we can save

some steps if all we care about is the upper
bound

•  bigO notation eliminates the need for constants
•  Lots of our messing around with c0 and c1 doesn’t

come through to the solution

ANALYSIS
•  Merge sort

ANALYSIS
•  Merge sort

•  Separate the data into individual pieces

ANALYSIS
•  Merge sort

•  Separate the data into individual pieces
•  Merge the pieces into larger and larger ones until

the data is sorted

ANALYSIS
•  Merge sort

•  Separate the data into individual pieces
•  Merge the pieces into larger and larger ones until

the data is sorted
•  What is the recurrence here?

ANALYSIS
•  Merge sort

•  Separate the data into individual pieces
•  Merge the pieces into larger and larger ones until

the data is sorted
•  What is the recurrence here?

•  T(n) = O(n) + 2T(n/2) for n>1

ANALYSIS
•  Merge sort

•  T(n) = O(1) for n < 2
•  T(n) = O(n) + 2T(n/2) for n>1

ANALYSIS
•  Merge sort

•  T(n) = O(1) for n < 2
•  T(n) = O(n) + 2T(n/2) for n>1
•  T(n) = c0 + c1*n + 2T(n/2)

ANALYSIS
•  Merge sort

•  T(n) = O(1) for n < 2
•  T(n) = O(n) + 2T(n/2) for n>1
•  T(n) = c0 + c1*n + 2T(n/2)
•  T(n) = c0 + c1*n + 2*c0 + 2*c1*n/2 + 4T(n/4)

ANALYSIS
•  Merge sort

•  T(n) = O(1) for n < 2
•  T(n) = O(n) + 2T(n/2) for n>1
•  T(n) = c0 + c1*n + 2T(n/2)
•  T(n) = c0 + c1*n + 2*c0 + 2*c1*n/2 + 4T(n/4)
•  T(n) = 3*c0 + 2*n*c1 + 4T(n/4)

ANALYSIS
•  Merge sort

•  T(n) = O(1) for n < 2
•  T(n) = O(n) + 2T(n/2) for n>1
•  T(n) = c0 + c1*n + 2T(n/2)
•  T(n) = c0 + c1*n + 2*c0 + 2*c1*n/2 + 4T(n/4)
•  T(n) = 3*c0 + 2*n*c1 + 4T(n/4)
•  T(n) = 3*c0 + 2*n*c1 + 4*c0 + 4*c1*n/4 + 8T(n/8)

ANALYSIS
•  Merge sort

•  T(n) = O(1) for n < 2
•  T(n) = O(n) + 2T(n/2) for n>1
•  T(n) = c0 + c1*n + 2T(n/2)
•  T(n) = c0 + c1*n + 2*c0 + 2*c1*n/2 + 4T(n/4)
•  T(n) = 3*c0 + 2*n*c1 + 4T(n/4)
•  T(n) = 3*c0 + 2*n*c1 + 4*c0 + 4*c1*n/4 + 8T(n/8)
•  …

ANALYSIS
•  Merge sort

•  T(n) = O(1) for n < 2
•  T(n) = O(n) + 2T(n/2) for n>1
•  T(n) = c0 + c1*n + 2T(n/2)
•  T(n) = c0 + c1*n + 2*c0 + 2*c1*n/2 + 4T(n/4)
•  T(n) = 3*c0 + 2*n*c1 + 4T(n/4)
•  T(n) = 3*c0 + 2*n*c1 + 4*c0 + 4*c1*n/4 + 8T(n/8)
•  …
•  We can derive the pattern this way, but it isn’t

necessarily intuitive

ANALYSIS
•  Merge sort

•  Consider the problem graphically

ANALYSIS
•  Merge sort

•  Consider the problem graphically
•  Each recursive call is a node in a tree

ANALYSIS
•  Merge sort

•  Consider the problem graphically
•  Each recursive call is a node in a tree
•  Helpful for logarithmic patterns and when each

run calls itself more than once

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern
•  Therefore, if you can produce a recurrence, there

is actually a procedural way to produce solutions

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern
•  Therefore, if you can produce a recurrence, there

is actually a procedural way to produce solutions
•  If T(n) = a*T(n/b)+nc for n > n0 and if the base

case is a constant

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern
•  Therefore, if you can produce a recurrence, there

is actually a procedural way to produce solutions
•  If T(n) = a*T(n/b)+nc for n > n0 and if the base

case is a constant
•  Case 1: logb(a) < c: T(n) = O(nc)
•  Case 2: logb(a) = c: T(n) = O(nc lg n)

•  Case 3: logb(a) > c: T(n) = O(nlog a)

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern
•  Therefore, if you can produce a recurrence, there

is actually a procedural way to produce solutions
•  If T(n) = a*T(n/b)+nc for n > n0 and if the base

case is a constant
•  Case 1: logb(a) < c: T(n) = O(nc)
•  Case 2: logb(a) = c: T(n) = O(nc lg n)

•  Case 3: logb(a) > c: T(n) = O(nlog a)
•  Verify with merge sort: a = 2, b = 2, c = 1

ANALYSIS

•  Recurrences come up all the time

ANALYSIS

•  Recurrences come up all the time
•  Analyze methods and iterative approaches

through the normal methods

ANALYSIS

•  Recurrences come up all the time
•  Analyze methods and iterative approaches

through the normal methods
•  Recursive functions use a recurrence

ANALYSIS

•  Recurrences come up all the time
•  Analyze methods and iterative approaches

through the normal methods
•  Recursive functions use a recurrence
•  Possible to get to bigO solution quickly

ANALYSIS

•  Recurrences come up all the time
•  Analyze methods and iterative approaches

through the normal methods
•  Recursive functions use a recurrence
•  Possible to get to bigO solution quickly
•  Usually for worst-case analysis

ANALYSIS

•  Final analysis type

ANALYSIS

•  Final analysis type
•  Worst-case

ANALYSIS

•  Final analysis type
•  Worst-case

•  Consider adding to an unsorted array

ANALYSIS

•  Final analysis type
•  Worst-case

•  Consider adding to an unsorted array
•  Resizing is the costly O(n) operation

ANALYSIS

•  Final analysis type
•  Worst-case

•  Consider adding to an unsorted array
•  Resizing is the costly O(n) operation
•  This occurs in predictable ways

ANALYSIS

•  Final analysis type
•  Worst-case

•  Consider adding to an unsorted array
•  Resizing is the costly O(n) operation
•  This occurs in predictable ways
•  Do these types of operations really slow down

the function?

AMORTIZED ANALYSIS

•  Adding to unsorted array

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more
•  It takes n-1*O(1) + 1*O(n) = O(n)

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more
•  It takes n-1*O(1) + 1*O(n) = O(n)
•  Amortized over the whole set of operations, each

one is only O(1) time

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more
•  It takes n-1*O(1) + 1*O(n) = O(n)
•  Amortized over the whole set of operations, each

one is only O(1) time
•  What does this depend on?

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more
•  It takes n-1*O(1) + 1*O(n) = O(n)
•  Amortized over the whole set of operations, each

one is only O(1) time
•  What does this depend on?

•  Doubling the array

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  What if we only add some constant number to the

array?
•  Let’s resize and add 10,000 elements every time
•  How long does it take to add n elements?
•  n-n/10,000*O(1) + n/10,000*O(n)

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  What if we only add some constant number to the

array?
•  Let’s resize and add 10,000 elements every time
•  How long does it take to add n elements?
•  n-n/10,000*O(1) + n/10,000*O(n) = O(n2)
•  This is for any constant, regardless of how large

P1 CHECKPOINT 1

•  Get into your project groups

P1 CHECKPOINT 1

•  Get into your project groups
•  We’ll be coming around to meet with you

for a few minutes

P1 CHECKPOINT 1

•  Get into your project groups
•  We’ll be coming around to meet with you

for a few minutes
•  Have you made it through part 1?
•  How has the team been working?
•  Have you started part 2?

P1 CHECKPOINT 1

•  Get into your project groups
•  We’ll be coming around to meet with you

for a few minutes
•  Have you made it through part 1?
•  How has the team been working?
•  Have you started part 2?

•  Good opportunity to make sure everything is on the
right track

P1 CHECKPOINT 1

•  Get into your project groups
•  We’ll be coming around to meet with you

for a few minutes
•  Have you made it through part 1?
•  How has the team been working?
•  Have you started part 2?

•  Good opportunity to make sure everything is on the
right track

•  Once one of us has talked with you, you’re free to
go

NEXT WEEK

•  Dictionaries

NEXT WEEK

•  Dictionaries
•  Binary Search Trees
•  Balancing

