CSE 332

JUNE 30™ - AMORTIZED ANALYSIS




ADMINISTRATIVE

« Tokens




ADMINISTRATIVE

« Tokens
« 3 tokens




ADMINISTRATIVE

« Tokens

« 3 tokens
* Opportunity to redo an exercise




ADMINISTRATIVE

« Tokens

« 3 tokens
* Opportunity to redo an exercise
* One late day on a project




ADMINISTRATIVE

« Tokens

« 3 tokens
* Opportunity to redo an exercise
* One late day on a project
 Website should be all accurate now




ADMINISTRATIVE

« Tokens

« 3 tokens
* Opportunity to redo an exercise
* One late day on a project

 Website should be all accurate now

* P1 Due Wednesday now




TODAY

* Recurrences




TODAY

* Recurrences

* Master Theorem




TODAY

* Recurrences
« Master Theorem

 Amortized Analysis




TODAY

« Recurrences
« Master Theorem
 Amortized Analysis

* Project checkpoint




REVIEW

* Algorithm Analysis
» Asymptotic behavior




REVIEW

* Algorithm Analysis

» Asymptotic behavior
 Loops and iterations




REVIEW

* Algorithm Analysis

» Asymptotic behavior
 Loops and iterations

e Recursive functions




REVIEW

* Algorithm Analysis

» Asymptotic behavior
 Loops and iterations

« Recursive functions
 Recurrence relations
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« On Wednesday, we showed the formal
recurrence approach

Break into recursive, non-recursive
Compute non-recursive computation time
Produce the recurrence

Roll out the recurrence and produce the closed
form

Upper-bound the closed form with bigO notation
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« Separate the data into individual pieces

* Merge the pieces into larger and larger ones until
the data is sorted

 What is the recurrence here?
 T(n) = O(n) + 2T(n/2) for n>1
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* Merge sort
* T(n)=0(1)forn<2
* T(n) = O(n) + 2T(n/2) for n>1
* T(n)=cy+c*n + 2T(n/2)
* T(n)=cy+c*n + 2%cy + 2"c,*n/2 + 4T(n/4)
* T(n) =3%cy, + 2*n*c, + 4T(n/4)
(n)

* We can derive the pattern this way, but it isn’t
necessarily intuitive
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* Merge sort

 Consider the problem graphically
 Each recursive call is a node in a tree

 Helpful for logarithmic patterns and when each
run calls itself more than once
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« Master theorem

These recurrences all follow a similar pattern

Therefore, if you can produce a recurrence, there
Is actually a procedural way to produce solutions
If T(n) =a*T(n/b)+n¢for n > nyand if the base
case is a constant

« Case 1:log,(a) < c: T(n) = O(n®)
» Case 2: log,(a) =c: T(n) = O(ncig n)
« Case 3: log,(a) > c: T(n) = O(n'°9 2)

Verify with merge sort: a=2,b=2,c =1
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 Recurrences come up all the time

Analyze methods and iterative approaches
through the normal methods

Recursive functions use a recurrence
Possible to get to bigO solution quickly
Usually for worst-case analysis
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* Final analysis type

- Worst-case
« Consider adding to an unsorted array
* Resizing is the costly O(n) operation
- This occurs in predictable ways

* Do these types of operations really slow down
the function?
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* Adding to unsorted array

How long does it take to add n elements into the
array?

Let’s say the array is full with n elements and we
add n more

It takes n-1*O(1) + 1*O(n) = O(n)
Amortized over the whole set of operations, each
one is only O(1) time
What does this depend on?
Doubling the array
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* Adding to unsorted array

What if we only add some constant number to the
array?

Let’s resize and add 10,000 elements every time
How long does it take to add n elements?
n-n/10,000*O(1) + n/10,000*O(n) = O(n?)
This is for any constant, regardless of how large
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« Get into your project groups

« We’ll be coming around to meet with you
for a few minutes

- Have you made it through part 1?
* How has the team been working?
- Have you started part 27
 Good opportunity to make sure everything is on the
right track

 Once one of us has talked with you, you’re free to
go
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 Dictionaries

* Binary Search Trees
- Balancing




