
CSE 332 
JUNE 30TH – AMORTIZED ANALYSIS 
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•  Asymptotic behavior 
•  Loops and iterations 
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•  Recurrence relations 
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ANALYSIS 
•  On Wednesday, we showed the formal 

recurrence approach 
•  Break into recursive, non-recursive 
•  Compute non-recursive computation time 
•  Produce the recurrence 
•  Roll out the recurrence and produce the closed 

form 
•  Upper-bound the closed form with bigO notation 
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•  Merge sort 

•  T(n) = O(1) for n < 2 
•  T(n) = O(n) + 2T(n/2) for n>1 
•  T(n) = c0 + c1*n + 2T(n/2) 
•  T(n) = c0 + c1*n + 2*c0 + 2*c1*n/2 + 4T(n/4) 
•  T(n) = 3*c0 + 2*n*c1 + 4T(n/4) 
•  T(n) = 3*c0 + 2*n*c1 + 4*c0 + 4*c1*n/4 + 8T(n/8) 
•  … 
•  We can derive the pattern this way, but it isn’t 

necessarily intuitive  
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•  Merge sort 

•  Consider the problem graphically 
•  Each recursive call is a node in a tree 
•  Helpful for logarithmic patterns and when each 

run calls itself more than once 
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•  Master theorem 

•  These recurrences all follow a similar pattern 
•  Therefore, if you can produce a recurrence, there 

is actually a procedural way to produce solutions 
•  If T(n) = a*T(n/b)+nc for n > n0 and if the base 

case is a constant 
•  Case 1: logb(a) < c: T(n) = O(nc) 
•  Case 2: logb(a) = c: T(n) = O(nc lg n) 

•  Case 3: logb(a) > c: T(n) = O(nlog a) 
•  Verify with merge sort: a = 2, b = 2, c = 1 
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•  Recurrences come up all the time 
•  Analyze methods and iterative approaches 

through the normal methods 
•  Recursive functions use a recurrence 
•  Possible to get to bigO solution quickly 
•  Usually for worst-case analysis 
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•  Final analysis type 
•  Worst-case 

•  Consider adding to an unsorted array 
•  Resizing is the costly O(n) operation 
•  This occurs in predictable ways 
•  Do these types of operations really slow down 

the function? 
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•  It takes n-1*O(1) + 1*O(n) = O(n) 
•  Amortized over the whole set of operations, each 

one is only O(1) time 
•  What does this depend on? 

•  Doubling the array 
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•  Adding to unsorted array 
•  What if we only add some constant number to the 

array? 
•  Let’s resize and add 10,000 elements every time 
•  How long does it take to add n elements? 
•  n-n/10,000*O(1) + n/10,000*O(n) = O(n2) 
•  This is for any constant, regardless of how large 
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•  Get into your project groups 
•  We’ll be coming around to meet with you 

for a few minutes 
•  Have you made it through part 1? 
•  How has the team been working? 
•  Have you started part 2? 

•  Good opportunity to make sure everything is on the 
right track 

•  Once one of us has talked with you, you’re free to 
go 
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•  Dictionaries 
•  Binary Search Trees 
•  Balancing 


