CSE 332

JUNE $30^{\text {TH }}$ - AMORTIZED ANALYSIS

ADMINISTRATIVE

- Tokens

ADMINISTRATIVE

- Tokens
- 3 tokens

ADMINISTRATIVE

- Tokens
- 3 tokens
- Opportunity to redo an exercise

ADMINISTRATIVE

- Tokens
- 3 tokens
- Opportunity to redo an exercise
- One late day on a project

ADMINISTRATIVE

- Tokens
- 3 tokens
- Opportunity to redo an exercise
- One late day on a project
- Website should be all accurate now

ADMINISTRATIVE

- Tokens
- 3 tokens
- Opportunity to redo an exercise
- One late day on a project
- Website should be all accurate now
- P1 Due Wednesday now

TODAY

- Recurrences

TODAY

- Recurrences
- Master Theorem

TODAY

- Recurrences
- Master Theorem
- Amortized Analysis

TODAY

- Recurrences
- Master Theorem
- Amortized Analysis
- Project checkpoint

REVIEW

- Algorithm Analysis
- Asymptotic behavior

REVIEW

- Algorithm Analysis
- Asymptotic behavior
- Loops and iterations

REVIEW

- Algorithm Analysis
- Asymptotic behavior
- Loops and iterations
- Recursive functions

REVIEW

- Algorithm Analysis
- Asymptotic behavior
- Loops and iterations
- Recursive functions
- Recurrence relations

ANALYSIS

- On Wednesday, we showed the formal recurrence approach

ANALYSIS

- On Wednesday, we showed the formal recurrence approach
- Break into recursive, non-recursive

ANALYSIS

- On Wednesday, we showed the formal recurrence approach
- Break into recursive, non-recursive
- Compute non-recursive computation time

ANALYSIS

- On Wednesday, we showed the formal recurrence approach
- Break into recursive, non-recursive
- Compute non-recursive computation time
- Produce the recurrence

ANALYSIS

- On Wednesday, we showed the formal recurrence approach
- Break into recursive, non-recursive
- Compute non-recursive computation time
- Produce the recurrence
- Roll out the recurrence and produce the closed form

ANALYSIS

- On Wednesday, we showed the formal recurrence approach
- Break into recursive, non-recursive
- Compute non-recursive computation time
- Produce the recurrence
- Roll out the recurrence and produce the closed form
- Upper-bound the closed form with bigO notation

ANALYSIS

- While this process is important, we can save some steps if all we care about is the upper bound

ANALYSIS

- While this process is important, we can save some steps if all we care about is the upper bound
- bigO notation eliminates the need for constants

ANALYSIS

- While this process is important, we can save some steps if all we care about is the upper bound
- bigO notation eliminates the need for constants
- Lots of our messing around with c_{0} and c_{1} doesn't come through to the solution

ANALYSIS

- While this process is important, we can save some steps if all we care about is the upper bound
- bigO notation eliminates the need for constants
- Lots of our messing around with c_{0} and c_{1} doesn't come through to the solution

ANALYSIS

- Merge sort

ANALYSIS

- Merge sort
- Separate the data into individual pieces

ANALYSIS

- Merge sort
- Separate the data into individual pieces
- Merge the pieces into larger and larger ones until the data is sorted

ANALYSIS

- Merge sort
- Separate the data into individual pieces
- Merge the pieces into larger and larger ones until the data is sorted
- What is the recurrence here?

ANALYSIS

- Merge sort
- Separate the data into individual pieces
- Merge the pieces into larger and larger ones until the data is sorted
- What is the recurrence here?
- $T(n)=O(n)+2 T(n / 2)$ for $n>1$

ANALYSIS

- Merge sort
- $T(n)=O(1)$ for $n<2$
- $T(n)=O(n)+2 T(n / 2)$ for $n>1$

ANALYSIS

- Merge sort
- $T(n)=O(1)$ for $n<2$
- $T(n)=O(n)+2 T(n / 2)$ for $n>1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2 T(n / 2)$

ANALYSIS

- Merge sort
- $T(n)=O(1)$ for $n<2$
- $T(n)=O(n)+2 T(n / 2)$ for $n>1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2 T(n / 2)$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2{ }^{*} \mathrm{c}_{0}+2{ }^{*} \mathrm{c}_{1}{ }^{*} \mathrm{n} / 2+4 \mathrm{~T}(\mathrm{n} / 4)$

ANALYSIS

- Merge sort
- $T(n)=O(1)$ for $n<2$
- $T(n)=O(n)+2 T(n / 2)$ for $n>1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2 T(n / 2)$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2{ }^{*} \mathrm{c}_{0}+2{ }^{*} \mathrm{c}_{1}{ }^{*} \mathrm{n} / 2+4 T(\mathrm{n} / 4)$
- $T(n)=3^{*} c_{0}+2^{*} n^{*} C_{1}+4 T(n / 4)$

ANALYSIS

- Merge sort
- $T(n)=O(1)$ for $n<2$
- $T(n)=O(n)+2 T(n / 2)$ for $n>1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2 T(n / 2)$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2{ }^{*} \mathrm{c}_{0}+2{ }^{*} \mathrm{c}_{1}{ }^{*} \mathrm{n} / 2+4 \mathrm{~T}(\mathrm{n} / 4)$
- $T(n)=3^{*} c_{0}+2^{*}{ }^{*} c_{1}+4 T(n / 4)$
- $T(n)=3^{*} c_{0}+2^{*} n^{*} c_{1}+4^{*} c 0+4^{*} c 1^{*} n / 4+8 T(n / 8)$

ANALYSIS

- Merge sort
- $T(n)=O(1)$ for $n<2$
- $T(n)=O(n)+2 T(n / 2)$ for $n>1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2 T(n / 2)$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2{ }^{*} \mathrm{c}_{0}+2{ }^{*} \mathrm{c}_{1}{ }^{*} \mathrm{n} / 2+4 \mathrm{~T}(\mathrm{n} / 4)$
- $T(n)=3^{*} c_{0}+2^{*} n^{*} c_{1}+4 T(n / 4)$
- $T(n)=3^{*} c_{0}+2^{*} n^{*} c_{1}+4^{*} c 0+4^{*} c 1^{*} n / 4+8 T(n / 8)$

ANALYSIS

- Merge sort
- $T(n)=O(1)$ for $n<2$
- $T(n)=O(n)+2 T(n / 2)$ for $n>1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2 T(n / 2)$
- $T(n)=c_{0}+c_{1}{ }^{*} n+2{ }^{*} \mathrm{c}_{0}+2{ }^{*} \mathrm{c}_{1}{ }^{*} \mathrm{n} / 2+4 \mathrm{~T}(\mathrm{n} / 4)$
- $T(n)=3^{*} c_{0}+2^{*}{ }^{*} c_{1}+4 T(n / 4)$
- $T(n)=3^{*} c_{0}+2^{*} n^{*} c_{1}+4^{*} \mathrm{c} 0+4^{*} \mathrm{c} 1^{*} \mathrm{n} / 4+8 T(n / 8)$
- We can derive the pattern this way, but it isn't necessarily intuitive

ANALYSIS

- Merge sort
- Consider the problem graphically

ANALYSIS

- Merge sort
- Consider the problem graphically
- Each recursive call is a node in a tree

ANALYSIS

- Merge sort
- Consider the problem graphically
- Each recursive call is a node in a tree
- Helpful for logarithmic patterns and when each run calls itself more than once

ANALYSIS

- Master theorem
- These recurrences all follow a similar pattern

ANALYSIS

- Master theorem
- These recurrences all follow a similar pattern
- Therefore, if you can produce a recurrence, there is actually a procedural way to produce solutions

ANALYSIS

- Master theorem
- These recurrences all follow a similar pattern
- Therefore, if you can produce a recurrence, there is actually a procedural way to produce solutions
- If $T(n)=a^{*} T(n / b)+n^{c}$ for $n>n_{0}$ and if the base case is a constant

ANALYSIS

- Master theorem
- These recurrences all follow a similar pattern
- Therefore, if you can produce a recurrence, there is actually a procedural way to produce solutions
- If $T(n)=a^{*} T(n / b)+n^{c}$ for $n>n_{0}$ and if the base case is a constant
- Case 1: $\log _{b}(a)<c: T(n)=O\left(n^{c}\right)$
- Case 2: $\log _{b}(a)=c: T(n)=O\left(n^{c} \lg n\right)$
- Case 3: $\log _{b}(a)>c: T(n)=O\left(n^{\log a}\right)$

ANALYSIS

- Master theorem
- These recurrences all follow a similar pattern
- Therefore, if you can produce a recurrence, there is actually a procedural way to produce solutions
- If $T(n)=a^{*} T(n / b)+n^{c}$ for $n>n_{0}$ and if the base case is a constant
- Case 1: $\log _{b}(a)<c: T(n)=O\left(n^{c}\right)$
- Case 2: $\log _{b}(a)=c: T(n)=O\left(n^{c} \lg n\right)$
- Case 3: $\log _{b}(a)>c: T(n)=O\left(n^{\log a}\right)$
- Verify with merge sort: $a=2, b=2, c=1$

ANALYSIS

- Recurrences come up all the time

ANALYSIS

- Recurrences come up all the time
- Analyze methods and iterative approaches through the normal methods

ANALYSIS

- Recurrences come up all the time
- Analyze methods and iterative approaches through the normal methods
- Recursive functions use a recurrence

ANALYSIS

- Recurrences come up all the time
- Analyze methods and iterative approaches through the normal methods
- Recursive functions use a recurrence
- Possible to get to bigO solution quickly

ANALYSIS

- Recurrences come up all the time
- Analyze methods and iterative approaches through the normal methods
- Recursive functions use a recurrence
- Possible to get to bigO solution quickly
- Usually for worst-case analysis

ANALYSIS

- Final analysis type

ANALYSIS

- Final analysis type
- Worst-case

ANALYSIS

- Final analysis type
- Worst-case
- Consider adding to an unsorted array

ANALYSIS

- Final analysis type
- Worst-case
- Consider adding to an unsorted array
- Resizing is the costly $O(n)$ operation

ANALYSIS

- Final analysis type
- Worst-case
- Consider adding to an unsorted array
- Resizing is the costly $O(n)$ operation
- This occurs in predictable ways

ANALYSIS

- Final analysis type
- Worst-case
- Consider adding to an unsorted array
- Resizing is the costly $O(n)$ operation
- This occurs in predictable ways
- Do these types of operations really slow down the function?

AMORTIZED ANALYSIS

- Adding to unsorted array

AMORTIZED ANALYSIS

- Adding to unsorted array
- How long does it take to add n elements into the array?

AMORTIZED ANALYSIS

- Adding to unsorted array
- How long does it take to add n elements into the array?
- Let's say the array is full with n elements and we add n more

AMORTIZED ANALYSIS

- Adding to unsorted array
- How long does it take to add n elements into the array?
- Let's say the array is full with n elements and we add n more
- It takes $n-1^{*} O(1)+1^{*} O(n)=O(n)$

AMORTIZED ANALYSIS

- Adding to unsorted array
- How long does it take to add n elements into the array?
- Let's say the array is full with n elements and we add n more
- It takes $\mathrm{n}-1^{*} \mathrm{O}(1)+1^{*} \mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
- Amortized over the whole set of operations, each one is only $O(1)$ time

AMORTIZED ANALYSIS

- Adding to unsorted array
- How long does it take to add n elements into the array?
- Let's say the array is full with n elements and we add n more
- It takes $n-1^{*} O(1)+1^{*} O(n)=O(n)$
- Amortized over the whole set of operations, each one is only $O(1)$ time
- What does this depend on?

AMORTIZED ANALYSIS

- Adding to unsorted array
- How long does it take to add n elements into the array?
- Let's say the array is full with n elements and we add n more
- It takes $n-1^{*} O(1)+1^{*} O(n)=O(n)$
- Amortized over the whole set of operations, each one is only $O(1)$ time
- What does this depend on?
- Doubling the array

AMORTIZED ANALYSIS

- Adding to unsorted array
- What if we only add some constant number to the array?
- Let's resize and add 10,000 elements every time
- How long does it take to add n elements?
- $n-n / 10,000 * O(1)+n / 10,000 * O(n)$

AMORTIZED ANALYSIS

- Adding to unsorted array
- What if we only add some constant number to the array?
- Let's resize and add 10,000 elements every time
- How long does it take to add n elements?
- $n-n / 10,000 * O(1)+n / 10,000 * O(n)=O\left(n^{2}\right)$
- This is for any constant, regardless of how large

P1 CHECKPOINT 1

- Get into your project groups

P1 CHECKPOINT 1

- Get into your project groups
- We'll be coming around to meet with you for a few minutes

P1 CHECKPOINT 1

- Get into your project groups
- We'll be coming around to meet with you for a few minutes
- Have you made it through part 1?
- How has the team been working?
- Have you started part 2?

P1 CHECKPOINT 1

- Get into your project groups
- We'll be coming around to meet with you for a few minutes
- Have you made it through part 1?
- How has the team been working?
- Have you started part 2?
- Good opportunity to make sure everything is on the right track

P1 CHECKPOINT 1

- Get into your project groups
- We'll be coming around to meet with you for a few minutes
- Have you made it through part 1?
- How has the team been working?
- Have you started part 2?
- Good opportunity to make sure everything is on the right track
- Once one of us has talked with you, you're free to go

NEXT WEEK

- Dictionaries

NEXT WEEK

- Dictionaries
- Binary Search Trees
- Balancing

