CSE 332

JUNE 30™ - AMORTIZED ANALYSIS




ADMINISTRATIVE

« Tokens




ADMINISTRATIVE

« Tokens
« 3 tokens




ADMINISTRATIVE

« Tokens

« 3 tokens
* Opportunity to redo an exercise




ADMINISTRATIVE

« Tokens

« 3 tokens
* Opportunity to redo an exercise
* One late day on a project




ADMINISTRATIVE

« Tokens

« 3 tokens
* Opportunity to redo an exercise
* One late day on a project
 Website should be all accurate now




ADMINISTRATIVE

« Tokens

« 3 tokens
* Opportunity to redo an exercise
* One late day on a project

 Website should be all accurate now

* P1 Due Wednesday now




TODAY

* Recurrences




TODAY

* Recurrences

* Master Theorem




TODAY

* Recurrences
« Master Theorem

 Amortized Analysis




TODAY

« Recurrences
« Master Theorem
 Amortized Analysis

* Project checkpoint




REVIEW

* Algorithm Analysis
» Asymptotic behavior




REVIEW

* Algorithm Analysis

» Asymptotic behavior
 Loops and iterations




REVIEW

* Algorithm Analysis

» Asymptotic behavior
 Loops and iterations

e Recursive functions




REVIEW

* Algorithm Analysis

» Asymptotic behavior
 Loops and iterations

« Recursive functions
 Recurrence relations




ANALYSIS

« On Wednesday, we showed the formal
recurrence approach




ANALYSIS

« On Wednesday, we showed the formal
recurrence approach

* Break into recursive, non-recursive




ANALYSIS

« On Wednesday, we showed the formal
recurrence approach

* Break into recursive, non-recursive
« Compute non-recursive computation time




ANALYSIS

 On Wednesday, we showed the formal
recurrence approach
* Break into recursive, non-recursive
« Compute non-recursive computation time
* Produce the recurrence




ANALYSIS

« On Wednesday, we showed the formal
recurrence approach
* Break into recursive, non-recursive
« Compute non-recursive computation time
* Produce the recurrence

 Roll out the recurrence and produce the closed
form




ANALYSIS

« On Wednesday, we showed the formal
recurrence approach

Break into recursive, non-recursive
Compute non-recursive computation time
Produce the recurrence

Roll out the recurrence and produce the closed
form

Upper-bound the closed form with bigO notation




ANALYSIS

* While this process is important, we can save
some steps if all we care about is the upper
bound




ANALYSIS

* While this process is important, we can save
some steps if all we care about is the upper
bound

 bigO notation eliminates the need for constants




ANALYSIS

* While this process is important, we can save
some steps if all we care about is the upper
bound

 bigO notation eliminates the need for constants

» Lots of our messing around with ¢, and c, doesn't
come through to the solution




ANALYSIS

* While this process is important, we can save
some steps if all we care about is the upper
bound

 bigO notation eliminates the need for constants

» Lots of our messing around with ¢, and c, doesn't
come through to the solution




ANALYSIS

* Merge sort




ANALYSIS

* Merge sort

« Separate the data into individual pieces




ANALYSIS

* Merge sort

« Separate the data into individual pieces

* Merge the pieces into larger and larger ones until
the data is sorted




ANALYSIS

* Merge sort

« Separate the data into individual pieces

* Merge the pieces into larger and larger ones until
the data is sorted

 What is the recurrence here?




ANALYSIS

* Merge sort

« Separate the data into individual pieces

* Merge the pieces into larger and larger ones until
the data is sorted

 What is the recurrence here?
 T(n) = O(n) + 2T(n/2) for n>1




ANALYSIS

* Merge sort
*« T(n)=0O(1)forn <2
» T(n) = O(n) + 2T(n/2) for n>1




ANALYSIS

* Merge sort
* T(n)=0(1)forn<2
* T(n) = 0O(n) + 2T(n/2) for n>1
* T(n)=cy+c*n + 2T(n/2)




ANALYSIS

* Merge sort

n)=0(1)forn<2

= O(n) + 2T(n/2) for n>1
=Cy*+ C*n + 2T(n/2)




ANALYSIS

* Merge sort




ANALYSIS

* Merge sort
* T(n

)
* T(n) = 0O(n) + 2T(n/2) for n>1
* T(n)=cy+c*n + 2T(n/2)
* T(n)=cy+c*n + 2%cy + 2"c,*n/2 + 4T(n/4)
* T(n) =3%cy, + 2*n*c, + 4T(n/4)
(n)




ANALYSIS

* Merge sort
* T(n

)
* T(n) = 0O(n) + 2T(n/2) for n>1
* T(n)=cy+c*n + 2T(n/2)
* T(n)=cy+c*n + 2%cy + 2"c,*n/2 + 4T(n/4)
* T(n) =3%cy, + 2*n*c, + 4T(n/4)
(n)




ANALYSIS

* Merge sort
* T(n)=0(1)forn<2
* T(n) = O(n) + 2T(n/2) for n>1
* T(n)=cy+c*n + 2T(n/2)
* T(n)=cy+c*n + 2%cy + 2"c,*n/2 + 4T(n/4)
* T(n) =3%cy, + 2*n*c, + 4T(n/4)
(n)

* We can derive the pattern this way, but it isn’t
necessarily intuitive




ANALYSIS

* Merge sort

 Consider the problem graphically




ANALYSIS

* Merge sort

 Consider the problem graphically
 Each recursive call is a node in a tree




ANALYSIS

* Merge sort

 Consider the problem graphically
 Each recursive call is a node in a tree

 Helpful for logarithmic patterns and when each
run calls itself more than once




ANALYSIS

« Master theorem

* These recurrences all follow a similar pattern




ANALYSIS

« Master theorem

* These recurrences all follow a similar pattern

* Therefore, if you can produce a recurrence, there
Is actually a procedural way to produce solutions




ANALYSIS

« Master theorem

* These recurrences all follow a similar pattern

* Therefore, if you can produce a recurrence, there
Is actually a procedural way to produce solutions

 If T(n) = a*T(n/b)+n°for n > nyand if the base
case is a constant




ANALYSIS

« Master theorem

* These recurrences all follow a similar pattern

* Therefore, if you can produce a recurrence, there
Is actually a procedural way to produce solutions
 If T(n) = a*T(n/b)+n°for n > nyand if the base
case is a constant
« Case 1:log,(a) < c: T(n) = O(n®)
» Case 2: log,(a) =c: T(n) = O(ncig n)
« Case 3: log,(a) > c: T(n) = O(n'°9 2)




ANALYSIS

« Master theorem

These recurrences all follow a similar pattern

Therefore, if you can produce a recurrence, there
Is actually a procedural way to produce solutions
If T(n) =a*T(n/b)+n¢for n > nyand if the base
case is a constant

« Case 1:log,(a) < c: T(n) = O(n®)
» Case 2: log,(a) =c: T(n) = O(ncig n)
« Case 3: log,(a) > c: T(n) = O(n'°9 2)

Verify with merge sort: a=2,b=2,c =1




ANALYSIS

 Recurrences come up all the time




ANALYSIS

 Recurrences come up all the time

* Analyze methods and iterative approaches
through the normal methods




ANALYSIS

 Recurrences come up all the time

* Analyze methods and iterative approaches
through the normal methods

« Recursive functions use a recurrence




ANALYSIS

 Recurrences come up all the time
* Analyze methods and iterative approaches
through the normal methods
* Recursive functions use a recurrence
« Possible to get to bigO solution quickly




ANALYSIS

 Recurrences come up all the time

Analyze methods and iterative approaches
through the normal methods

Recursive functions use a recurrence
Possible to get to bigO solution quickly
Usually for worst-case analysis




ANALYSIS

* Final analysis type




ANALYSIS

* Final analysis type

Worst-case




ANALYSIS

* Final analysis type

- Worst-case
- Consider adding to an unsorted array




ANALYSIS

* Final analysis type

« Worst-case

- Consider adding to an unsorted array
* Resizing is the costly O(n) operation




ANALYSIS

* Final analysis type

- Worst-case
« Consider adding to an unsorted array
* Resizing is the costly O(n) operation
- This occurs in predictable ways




ANALYSIS

* Final analysis type

- Worst-case
« Consider adding to an unsorted array
* Resizing is the costly O(n) operation
- This occurs in predictable ways

* Do these types of operations really slow down
the function?




AMORTIZED ANALYSIS

* Adding to unsorted array




AMORTIZED ANALYSIS

 Adding to unsorted array

How long does it take to add n elements into the
array?




AMORTIZED ANALYSIS

 Adding to unsorted array

 How long does it take to add n elements into the
array?

- Let's say the array is full with n elements and we
add n more




AMORTIZED ANALYSIS

 Adding to unsorted array

How long does it take to add n elements into the
array?

Let’s say the array is full with n elements and we
add n more

It takes n-1*O(1) + 1*O(n) = O(n)




AMORTIZED ANALYSIS

* Adding to unsorted array

How long does it take to add n elements into the
array?

Let’s say the array is full with n elements and we
add n more

It takes n-1*O(1) + 1*O(n) = O(n)

Amortized over the whole set of operations, each
one is only O(1) time




AMORTIZED ANALYSIS

* Adding to unsorted array

How long does it take to add n elements into the
array?

Let’s say the array is full with n elements and we
add n more

It takes n-1*O(1) + 1*O(n) = O(n)

Amortized over the whole set of operations, each
one is only O(1) time

What does this depend on?




AMORTIZED ANALYSIS

* Adding to unsorted array

How long does it take to add n elements into the
array?

Let’s say the array is full with n elements and we
add n more

It takes n-1*O(1) + 1*O(n) = O(n)
Amortized over the whole set of operations, each
one is only O(1) time
What does this depend on?
Doubling the array




AMORTIZED ANALYSIS

* Adding to unsorted array

What if we only add some constant number to the
array?

Let’s resize and add 10,000 elements every time
How long does it take to add n elements?
n-n/10,000*O(1) + n/10,000*0O(n)




AMORTIZED ANALYSIS

* Adding to unsorted array

What if we only add some constant number to the
array?

Let’s resize and add 10,000 elements every time
How long does it take to add n elements?
n-n/10,000*O(1) + n/10,000*O(n) = O(n?)
This is for any constant, regardless of how large




P1 CHECKPOINT 1

« Get into your project groups




P1 CHECKPOINT 1

« Get into your project groups

« We’ll be coming around to meet with you
for a few minutes




P1 CHECKPOINT 1

« Get into your project groups

« We’ll be coming around to meet with you
for a few minutes

- Have you made it through part 1?
* How has the team been working?
- Have you started part 27




P1 CHECKPOINT 1

« Get into your project groups

« We’ll be coming around to meet with you
for a few minutes

- Have you made it through part 1?
* How has the team been working?
- Have you started part 27

 Good opportunity to make sure everything is on the
right track




P1 CHECKPOINT 1

« Get into your project groups

« We’ll be coming around to meet with you
for a few minutes

- Have you made it through part 1?
* How has the team been working?
- Have you started part 27
 Good opportunity to make sure everything is on the
right track

 Once one of us has talked with you, you’re free to
go




NEXT WEEK

 Dictionaries




NEXT WEEK

 Dictionaries

* Binary Search Trees
- Balancing




