CSE 332: Data Structures and Parallelism Summer 2017

Recurrences Review

Overview

This document is intended to review different aspects of recurrences as we covered them in lecture and section.
When we discuss Recurrences in this course, we tend to focus on three different topics: The Recurrence itself,
the Closed Form of a recurrence, and Asymptotic Analysis of recurrences. We will spend some time on each
of these topics in this document, with the intention of providing clearer differentiation between them.

The Recurrence itself

In general terms, a Recurrence is a piecewise function representing a certain aspect of a function; we have thus
far focused on runtime (the number of “steps” an algorithm takes), but we could model recurrences on other
aspects, including output (what the algorithm returns). This document will continue to focus on recurrences for
runtime.

When we are tasked with writing a recurrence for a function, our first step is to figure out which parts of the
function represent base cases and which represent recursive cases; then, we figure out the runtime of the base
cases and add conditions to our piecewise function for each base case. Our next step is to find out how much
“recursive work” each of our recursive cases do (where “recursive work™ is just the recursive function calls), and
log that in our recurrence. Finally, we analyze how much nonrecursive work our recursive cases do and record
that in our recurrence. Putting everything together, a recurrence will look something like this:

( [base case] (condition)

[base case] (condition)
[recursive case] (condition)

[recursive case] (condition)

Note that the lecture slides presented recurrence functions in a way that “looked different”; specifically, like this:
T(n) = [base case] when (condition)

T(n) = [base case] when (condition)
T(n) = [recursive case] when (condition)

T(n) = [recursive case| when (condition)
But these are actually equivalent ways to express T(n), and you may choose to use either.

Closed Forms
Once we've found a recurrence, we may be asked to find a closed form. A closed form for a recurrence for
runtime is an exact representation of the number of steps the function takes. A recurrence itself is not a closed
form, nor is an expression with a summation. To find a closed form, we have two strategies to choose from (note
we will assume our recurrence only has one recursive case in these situations, as having more than one makes
finding a closed form more complicated):
(a) Unrolling a recurrence is a strategy we typically use when the recursive case only has one recursive call.
That is, if the recursive case looks like T'(n) = T'(n/2)+[nonrecursive work], for example. When we unroll,
we write out the recursive case of our recurrence, substitute the recursive call to T with it's recursive case,



and keep going until we can detect a pattern. Consider the following example:
ifn<0
T(n) =" -
T(n—1)+cin+ca otherwise
We would start unrolling like so:
T(n)=Tn—-1)4+cin+c

=T(n—-2)+ci(n—1)+c2+cin+co
Tn—3)+ci(n—2)+co+cri(n—1)+co+cin+c

From here, we could start to detect a pattern: we know we will have n recursive terms, plus ¢ (for the
non-recursive work once we reach the end), so we know there will be n ¢y terms, as well as > | ¢1 % ¢
work from all the ¢; terms; so our recurrence is thus transformed into:

n
T(n) = co+zcl * 1+ con
=1

Once we apply the first closed form in your summation sheets, we get our final closed-form representation

of T'(n):

n(n+1)
2

It's important to note that, you may be tempted to try to simplify an expression (especially if it's particularly

ugly). Don’t. The moment you've eliminated any summations from your expression, you've found a closed

form; simplification increases the risk of making typos or other minor mistakes.

T(n) =co+ i ) + can

The other method we could use to find a closed form is by building up a recurrence tree. This is the
strategy we commonly use when our recurrence has more than one recursive call. If our recurrence makes
k recursive calls, this method involves envisioning a tree where each node represents the nonrecursive
work done at that step in the recurrence and has k child nodes which each represent the next step in the
recurrence. The leaf nodes of the tree represent the base case of the recurrence. Let's consider an example:

T(n):{c[) ifn<l1

2T (n/2) + cin+ ¢z otherwise

The root node of the recurrence tree represents T'(n); it has ¢cyn—+cy work and 2 children, both representing
T'(n/2). The children both have ¢;(n/2) 4+ c2 and two children of their own representing 7'(n/4), and so
on. All the way at the bottom level are the base-case nodes, each with ¢y work and 0 children. You may
want to consider drawing this tree out as a personal guide while we walk through the task of counting the
work.

To calculate the amount of work done in this tree, we reason like so: we split n in half every time we
go down a level in the tree, so the height of the tree is loga(n). If we consider the root node level 0, its
children level 1, their children level 2, and so on, then we can express the work in an arbitrary node at level
i as c1(57) + 2, and we can say that each level in our tree has 2’ nodes. Note that the base-case work
cannot be represented in terms of i, so we have to handle that differently. There are 2"€19"* hase-case
nodes, each with c¢o work, so we can express the work done in the tree as the sum over the height minus
1 of the multiple of the number of nodes at level 7 and the amount of work on of those nodes does, plus
the amount of base case work. In this case:

loga(n)—1 ‘ n
T)=( Y, 2(eg +e)+2%e
=0



We're almost there; all we have to do now is remove the summations. To do that, we need to use algebraic
manipulation to be able to use one of the closed-forms on the summations sheet. Doing a bit of arithmetic,
we can transform the above expression into the following:

loga(n)—1 loga(n)—1 '
T(n) = (c1n 1)+ (c2 2%) 4 2l092() ¢
1=0 1=0

All the first summation is doing is adding 1 loga(n) times, and the second summation we can express using
the third closed-form from our summation sheet to get the following:

1 — 9loga(n)

— + 21092(71)60

T'(n) = cinlogz(n) + c2

We do not need to simplify this any further. This is a sufficient closed-form for our recurrence!

Asymptotic Analysis

The third common question we may be asked regarding recurrences is to derive some asymptotic bound for the
recurrence. There is one main way we do this, as well as one special method we can apply given a few certain
restrictions. The main way we do this is by finding a closed form, like we did in the previous part, and then
analytically determining the asymptotic bound. The special way, only applicable if we're looking for Big-O from
a recurrence of a certain form, is the Master Theorem.

()

(b)

Let's consider the unrolling recurrence from the previous part: when we look at the closed form for this
recurrence, we see that the dominant term is n?. Thus, we can say that T'(n) € O(n?). It is also in 2(n?).

The Master Theorem is a special way to analyze the asymptotic runtime of a recurrence. It is only useful
for Big-O analysis, and it only works on recurrences resembling the following:

Cy if n < ng
T(n) - n c c—1 H
al(%)+n®+n"" +... otherwise

That is, it only works when the base case is a constant and the recursive case involves one or more recursive
calls where n is divided by some constant > 1.
Master theorem analyzes the runtime by using the constants a, b, and ¢ like so:

o if logy(a) < ¢, then T'(n) € O(n°)
e if logy(a) = ¢, then T'(n) € O(nlg(n))
e if logy(a) > ¢, then T'(n) € O(nlo9(®)

Let's consider for an example the second recurrence for which we found a closed form: That recurrence
had constant base-case work and a recursive case looking like 27°(n/2) + ¢in + c2. For Master Theorem,
the constants we need to analyze are a = 2, b = 2, and ¢ = 1. loga(2) = 1, which is what ¢ is, so by
Master Theorem we know T'(n) € O(nlg(n)). We can confirm this looking at our closed form: Of the
three summed terms, the dominant term is ¢;nloga(n) (note that 2/°92(") = p, by logarithmic properties),
so the closed form must be in O(nloga(n)), which is exactly what Master Theorem told us it would be.



