
CSE 332
JUNE 28TH – RECURRENCE RELATIONS

ASSORTED MINUTIAE
•  Permissions problems

ASSORTED MINUTIAE
•  Permissions problems

•  EX02 on Friday

ASSORTED MINUTIAE
•  Permissions problems

•  EX02 extended to Friday
•  P1 checkpoint on Friday

ASSORTED MINUTIAE
•  Permissions problems

•  EX02 extended to Friday
•  P1 checkpoint on Friday
•  EX03 due Monday

ASSORTED MINUTIAE
•  Permissions problems

•  EX02 extended to Friday
•  P1 checkpoint on Friday
•  EX03 due Monday
•  Website will be updated with accurate

information soon

REVIEW
•  Algorithm Analysis

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  How does an algorithm react to change

in input size?

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  How does an algorithm react to change

in input size?
•  bigO

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  How does an algorithm react to change

in input size?
•  bigO

•  Formal inequality – upper bound

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  How does an algorithm react to change

in input size?
•  bigO

•  Formal inequality – upper bound
•  Allows comparison of approaches

REVIEW
•  Practice

•  Inserting into a sorted linked list

REVIEW
•  Practice

•  Inserting into a sorted linked list
•  What is the approach?

REVIEW
start at the front of the list!

REVIEW
start at the front of the list!

while the pointer is less than the insert item:!

REVIEW
start at the front of the list!

while the pointer is less than the insert item:!

!move to the next node!

REVIEW
start at the front of the list!

while the pointer is less than the insert item:!

!move to the next node!

insert the element, relinking the list around it!

REVIEW
start at the front of the list!

while the pointer is less than the insert item:!

!move to the next node!

insert the element, relinking the list around it!

•  What is the runtime here?
!

REVIEW
start at the front of the list!

while the pointer is less than the insert item:!

!move to the next node!

insert the element, relinking the list around it!

•  What is the runtime here?
•  Important considerations—best-case or

worst-case?
!

REVIEW
•  Worst-case
!

REVIEW
•  Worst-case

•  What is this case?
!

REVIEW
•  Worst-case

•  What is this case?
•  Inserting the new largest element (i.e. at the end

of the list)
!

REVIEW
•  Worst-case

•  What is this case?
•  Inserting the new largest element (i.e. at the end

of the list)
•  What is the runtime?

•  O(n)

REVIEW
•  Worst-case

•  What is this case?
•  Inserting the new largest element (i.e. at the end

of the list)
•  What is the runtime?

•  O(n) Why?

REVIEW
•  Worst-case

•  What is this case?
•  Inserting the new largest element (i.e. at the end

of the list)
•  What is the runtime?

•  O(n) Why?
•  The loop must iterate through all n elements to

find the correct place

REVIEW
•  Best-case

REVIEW
•  Best-case

•  What is this case?

REVIEW
•  Best-case

•  What is this case?
•  Smallest element, inserting at the beginning

REVIEW
•  Best-case

•  What is this case?
•  Smallest element, inserting at the beginning

•  What is the runtime?

REVIEW
•  Best-case

•  What is this case?
•  Smallest element, inserting at the beginning

•  What is the runtime?
•  O(1)

REVIEW
•  Best-case

•  What is this case?
•  Smallest element, inserting at the beginning

•  What is the runtime?
•  O(1) – we can add to the front of a linked list in

constant time

ANALYSIS
•  Loops and iterations can be analyzed

ANALYSIS
•  Loops and iterations can be analyzed
•  How do we approach recursive functions?

ANALYSIS
•  Loops and iterations can be analyzed
•  How do we approach recursive functions?

•  Let’s consider a recursive algorithm that reverses a list

ANALYSIS
reverse(Node L):!

!if(L==null) return L;!

!else if(L.next == null) return L;!

!else!

! !Node front = L!

! !Node rest = L.next!

! !L.next = null!

! !Node restRev = reverse(rest)!

! !appendToEnd(front,restRev)!

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L;!

!else if(L.next == null) return L;!

!else!

! !Node front = L!

! !Node rest = L.next!

! !L.next = null!

! !Node restRev = reverse(rest)!

! !appendToEnd(front,restRev)!

•  We know how to analyze everything but the recursive step,
so break the algorithm into its two parts, recursive and
non-recursive

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;!

!else!

! !Node front = L!

! !Node rest = L.next!

! !L.next = null!

! !Node restRev = reverse(rest)!

! !appendToEnd(front,restRev)!

•  We know how to analyze everything but the recursive step,
so break the algorithm into its two parts, recursive and
non-recursive

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L!

! !Node rest = L.next!

! !L.next = null!

! !Node restRev = reverse(rest)!

! !appendToEnd(front,restRev)!

•  We know how to analyze everything but the recursive step,
so break the algorithm into its two parts, recursive and
non-recursive

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next!

! !L.next = null!

! !Node restRev = reverse(rest)!

! !appendToEnd(front,restRev)!

•  We know how to analyze everything but the recursive step,
so break the algorithm into its two parts, recursive and
non-recursive

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null!

! !Node restRev = reverse(rest)!

! !appendToEnd(front,restRev)!

•  We know how to analyze everything but the recursive step,
so break the algorithm into its two parts, recursive and
non-recursive

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest)!

! !appendToEnd(front,restRev)!

•  We know how to analyze everything but the recursive step,
so break the algorithm into its two parts, recursive and
non-recursive

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev)!

•  We know how to analyze everything but the recursive step,
so break the algorithm into its two parts, recursive and
non-recursive

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  We know how to analyze everything but the recursive step,
so break the algorithm into its two parts, recursive and
non-recursive

!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  What is the runtime of the non-recursive work?
!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  What is the runtime of the non-recursive work?
•  Depends on the case!
!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  What is the runtime of the non-recursive work?
•  Depends on the case! There are two base cases, n = 0 and

n = 1, but let’s look at the n > 1 case first!!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  What is the runtime of the non-recursive work?
•  Depends on the case! There are two base cases, n = 0 and

n = 1, but let’s look at the n > 1 case first!!
•  Suppose that appendToEnd takes O(n) time

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  What is the runtime of the non-recursive work?
•  Let’s look at each piece

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  What is the runtime of the non-recursive work?
•  Let’s look at each piece

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  What is the runtime of the non-recursive work?
•  Let’s look at each piece

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive!

•  What is the runtime of the non-recursive work?
•  Let’s look at each piece

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive!

!else if(L.next == null) return L;! !non-recursive!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the runtime of the non-recursive work?
•  Let’s look at each piece

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the runtime of the non-recursive work?
•  Let’s look at each piece

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the runtime of the non-recursive work?
•  Here, n is the size of the list starting at L

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the runtime of the non-recursive work?
•  This is O(n) total, which means we can upper bound the

non-recursive work by c0 + c1*n!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?!

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?
•  Let the functions runtime be denoted as T(n), where n is the

number of elements

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?
•  T(n) = c0 + c1*n + recursive work

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?
•  T(n) = c0 + c1*n + recursive work
•  What is the recursive work?

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?
•  T(n) = c0 + c1*n + recursive work
•  What is the recursive work? rest is size n-1

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?
•  T(n) = c0 + c1*n + T(n-1)

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?
•  T(n) = c0 + c1*n + T(n-1)
•  This is the recurrence! It’s a function that uses itself in its definition

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?
•  T(n) = c0 + c1*n + T(n-1)
•  This is the recurrence! It’s a function that uses itself in its definition
•  Fibonnacci numbers are an example

ANALYSIS
reverse(Node L):!

!if(L==null) return L; ! ! !non-recursive O(1)!

!else if(L.next == null) return L;! !non-recursive O(1)!

!else!

! !Node front = L ! ! !non-recursive O(1)!

! !Node rest = L.next ! !non-recursive O(1)!

! !L.next = null ! ! !non-recursive O(1)!

! !Node restRev = reverse(rest) !recursive!

! !appendToEnd(front,restRev) !non-recursive O(n)!

•  What is the total runtime then?
•  T(n) = c0 + c1*n + T(n-1)
•  This is the recurrence! It’s a function that uses itself in its definition
•  Fibonnacci numbers are an example. What’s missing?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  How do we solve this recurrence?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  How do we solve this recurrence?

•  We can unroll it and see if a pattern emerges
•  T(n) = c0 + c1*n + T(n-1)

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  How do we solve this recurrence?

•  We can unroll it and see if a pattern emerges
•  T(n) = c0 + c1*n + T(n-1)
•  T(n) = c0 + c1*n + c0 + c1*(n-1) + T(n-2)

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  How do we solve this recurrence?

•  We can unroll it and see if a pattern emerges
•  T(n) = c0 + c1*n + T(n-1)
•  T(n) = c0 + c1*n + c0 + c1*(n-1) + T(n-2)
•  T(n) = c0 + c1*n + c0 + c1*(n-1) + c0 + c1*(n-2) + T(n-3)
•  T(n) = 3c0 + c1*(n+(n-1)+(n-2)) + T(n-3)
•  What are the patterns?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  What are the patterns?

•  Each time we add 1 c0

•  Each time we add ‘n’ c1

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  What are the patterns?

•  Each time we add 1 c0

•  Each time we add ‘n’ c1

•  But n is getting reduced by one every time

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  What are the patterns?

•  Each time we add 1 c0

•  Each time we add ‘n’ c1

•  But n is getting reduced by one every time
•  How many times does this call itself?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  What are the patterns?

•  Each time we add 1 c0

•  Each time we add ‘n’ c1

•  But n is getting reduced by one every time
•  How many times does this call itself?

•  n-1, because 1 is a base case

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  What are the patterns?

•  Each time we add 1 c0

•  Each time we add ‘n’ c1

•  But n is getting reduced by one every time
•  How many times does this call itself?

•  n-1, because 1 is a base case
•  What then is the closed form of this recurrence?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) =

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) = (n-1) * c0 +

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) = (n-1) * c0 + Σ i * c1

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) = (n-1) * c0 + (n-1)*(n-2)/2 * c1

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) = (n-1) * c0 + (n-1)*(n-2)/2 * c1

•  Is this all?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) = (n-1) * c0 + (n-1)*(n-2)/2 * c1 + d1

•  Is this all?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) = (n-1) * c0 + (n-1)*(n-2)/2 * c1 + d1

•  What is the upper bound of this function?

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) = (n-1) * c0 + (n-1)*(n-2)/2 * c1 + d1

•  What is the upper bound of this function?
•  O(n2)

ANALYSIS
•  Recurrence relation for reverse

•  T(n) = d0 when n = 0

•  T(n) = d1 when n = 1

•  T(n) = c0 + c1*n + T(n-1) when n > 1
•  Closed form?

•  T(n) = (n-1) * c0 + (n-1)*(n-2)/2 * c1 + d1

•  What is the upper bound of this function?
•  O(n2) the O(n) appendToEnd is what costs us

ANALYSIS
•  Let’s consider binary search again

ANALYSIS
•  Let’s consider binary search again

•  We mentioned last week that it was O(log n)

ANALYSIS
•  Let’s consider binary search again

•  We mentioned last week that it was O(log n)
•  Can you use recurrence relations to show this for a recursive

implementation?

ANALYSIS
•  Let’s consider binary search again

•  We mentioned last week that it was O(log n)
•  Can you use recurrence relations to show this for a recursive

implementation?
BinarySearch(Integer[] array, Integer value, int lo, int hi)!

!if(hi < lo) return null;!

!mid = high/2 + low/2!

!if(A[mid] > value)!

! !return BinarySearch(array,value,mid,hi)!

!else if(A[mid] < value)!

! !return BinarySearch(array,value,lo,mid)!

!else return mid!

ANALYSIS
BinarySearch(Integer[] array, Integer value, int lo, int hi)!

!if(hi < lo) return null;!

!mid = high/2 + low/2!

!if(A[mid] > value)!

! !return BinarySearch(array,value,mid,hi)!

!else if(A[mid] < value)!

! !return BinarySearch(array,value,lo,mid)!

!else return mid!

ANALYSIS
BinarySearch(Integer[] array, Integer value, int lo, int hi)!

!if(hi < lo) return null;!

!mid = high/2 + low/2!

!if(A[mid] > value)!

! !return BinarySearch(array,value,mid,hi)!

!else if(A[mid] < value)!

! !return BinarySearch(array,value,lo,mid)!

!else return mid!

•  What steps do we need to take?

ANALYSIS
BinarySearch(Integer[] array, Integer value, int lo, int hi)!

!if(hi < lo) return null;!

!mid = high/2 + low/2!

!if(A[mid] > value)!

! !return BinarySearch(array,value,mid,hi)!

!else if(A[mid] < value)!

! !return BinarySearch(array,value,lo,mid)!

!else return mid!

•  What steps do we need to take?

•  Break down into recursive and non-recursive

ANALYSIS
BinarySearch(Integer[] array, Integer value, int lo, int hi)!

!if(hi < lo) return null;!

!mid = high/2 + low/2!

!if(A[mid] > value)!

! !return BinarySearch(array,value,mid,hi)!

!else if(A[mid] < value)!

! !return BinarySearch(array,value,lo,mid)!

!else return mid!

•  What steps do we need to take?

•  Break down into recursive and non-recursive
•  Calculate the non-recursive runtimes

ANALYSIS
BinarySearch(Integer[] array, Integer value, int lo, int hi)!

!if(hi < lo) return null;!

!mid = high/2 + low/2!

!if(A[mid] > value)!

! !return BinarySearch(array,value,mid,hi)!

!else if(A[mid] < value)!

! !return BinarySearch(array,value,lo,mid)!

!else return mid!

•  What steps do we need to take?

•  Break down into recursive and non-recursive
•  Calculate the non-recursive runtimes
•  Produce the recurrence

ANALYSIS
BinarySearch(Integer[] array, Integer value, int lo, int hi)!

!if(hi < lo) return null;!

!mid = high/2 + low/2!

!if(A[mid] > value)!

! !return BinarySearch(array,value,mid,hi)!

!else if(A[mid] < value)!

! !return BinarySearch(array,value,lo,mid)!

!else return mid!

•  What steps do we need to take?

•  Break down into recursive and non-recursive
•  Calculate the non-recursive runtimes
•  Produce the recurrence
•  Roll out the recurrence to observe a pattern

ANALYSIS
BinarySearch(Integer[] array, Integer value, int lo, int hi)!

!if(hi < lo) return null;!

!mid = high/2 + low/2!

!if(A[mid] > value)!

! !return BinarySearch(array,value,mid,hi)!

!else if(A[mid] < value)!

! !return BinarySearch(array,value,lo,mid)!

!else return mid!

•  What steps do we need to take?

•  Break down into recursive and non-recursive
•  Calculate the non-recursive runtimes
•  Produce the recurrence
•  Roll out the recurrence to observe a pattern
•  Upper bound the closed form

ANALYSIS
•  What is the recurrence we produced?

ANALYSIS
•  What is the recurrence we produced?

•  T(n) = d0 for n = 0

ANALYSIS
•  What is the recurrence we produced?

•  T(n) = d0 for n = 0
•  T(n) = c0 + T(n/2) for n > 0

ANALYSIS
•  What is the recurrence we produced?

•  T(n) = d0 for n = 0
•  T(n) = c0 + T(n/2) for n > 0

•  Important to note

ANALYSIS
•  What is the recurrence we produced?

•  T(n) = d0 for n = 0
•  T(n) = c0 + T(n/2) for n > 0

•  Important to note

•  How many times can we divide n by 2 until we get 1?

ANALYSIS
•  What is the recurrence we produced?

•  T(n) = d0 for n = 0
•  T(n) = c0 + T(n/2) for n > 0

•  Important to note

•  How many times can we divide n by 2 until we get 1?
•  Log2 n

NEXT LECTURE

•  Binary search recurrence

NEXT LECTURE

•  Binary search recurrence
•  More recurrences

NEXT LECTURE

•  Binary search recurrence
•  More recurrences
•  Amortized analysis

