CSE 332

JUNE $28^{\text {TH }}$ - RECURRENCE RELATIONS

ASSORTED MINUTIAE

- Permissions problems

ASSORTED MINUTIAE

- Permissions problems
- EX02 on Friday

ASSORTED MINUTIAE

- Permissions problems
- EX02 extended to Friday
- P1 checkpoint on Friday

ASSORTED MINUTIAE

- Permissions problems
- EX02 extended to Friday
- P1 checkpoint on Friday
- EX03 due Monday

ASSORTED MINUTIAE

- Permissions problems
- EX02 extended to Friday
- P1 checkpoint on Friday
- EX03 due Monday
- Website will be updated with accurate information soon

REVIEW

- Algorithm Analysis

REVIEW

- Algorithm Analysis
- Asymptotic behavior

REVIEW

- Algorithm Analysis
- Asymptotic behavior
- How does an algorithm react to change in input size?

REVIEW

- Algorithm Analysis
- Asymptotic behavior
- How does an algorithm react to change in input size?
- bigO

REVIEW

- Algorithm Analysis
- Asymptotic behavior
- How does an algorithm react to change in input size?
- bigO
- Formal inequality - upper bound

REVIEW

- Algorithm Analysis
- Asymptotic behavior
- How does an algorithm react to change in input size?
- bigO
- Formal inequality - upper bound
- Allows comparison of approaches

REVIEW

- Practice
- Inserting into a sorted linked list

REVIEW

- Practice
- Inserting into a sorted linked list
- What is the approach?

REVIEW

start at the front of the list

REVIEW

```
start at the front of the list
while the pointer is less than the insert item:
```


REVIEW

```
start at the front of the list
while the pointer is less than the insert item:
    move to the next node
```


REVIEW

start at the front of the list
while the pointer is less than the insert item:
move to the next node
insert the element, relinking the list around it

REVIEW

start at the front of the list
while the pointer is less than the insert item:
move to the next node
insert the element, relinking the list around it

- What is the runtime here?

REVIEW

```
start at the front of the list
while the pointer is less than the insert item:
    move to the next node
insert the element, relinking the list around it
- What is the runtime here?
```

- Important considerations-best-case or worst-case?

REVIEW

- Worst-case

REVIEW

- Worst-case
- What is this case?

REVIEW

- Worst-case
- What is this case?
- Inserting the new largest element (i.e. at the end of the list)

REVIEW

- Worst-case
- What is this case?
- Inserting the new largest element (i.e. at the end of the list)
- What is the runtime?
- $O(n)$

REVIEW

- Worst-case
- What is this case?
- Inserting the new largest element (i.e. at the end of the list)
- What is the runtime?
- O(n) Why?

REVIEW

- Worst-case
- What is this case?
- Inserting the new largest element (i.e. at the end of the list)
- What is the runtime?
- O(n) Why?
- The loop must iterate through all n elements to find the correct place

REVIEW

- Best-case

REVIEW

- Best-case
- What is this case?

REVIEW

- Best-case
- What is this case?
- Smallest element, inserting at the beginning

REVIEW

- Best-case
- What is this case?
- Smallest element, inserting at the beginning
- What is the runtime?

REVIEW

- Best-case
- What is this case?
- Smallest element, inserting at the beginning
- What is the runtime?
- O(1)

REVIEW

- Best-case
- What is this case?
- Smallest element, inserting at the beginning
- What is the runtime?
- $\mathbf{O}(1)$ - we can add to the front of a linked list in constant time

ANALYSIS

- Loops and iterations can be analyzed

ANALYSIS

- Loops and iterations can be analyzed
- How do we approach recursive functions?

ANALYSIS

- Loops and iterations can be analyzed
- How do we approach recursive functions?
- Let's consider a recursive algorithm that reverses a list

ANALYSIS

```
reverse(Node L):
    if(L==null) return L;
    else if(L.next == null) return L;
    else
            Node front = L
            Node rest = L.next
            L.next = null
            Node restRev = reverse(rest)
            appendToEnd(front,restRev)
```


ANALYSIS

reverse(Node L):

```
if(L==null) return L;
    else if(L.next == null) return L;
    else
```

```
Node front = L
Node rest = L.next
L.next = null
Node restRev = reverse(rest)
appendToEnd(front,restRev)
```

- We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
    else if(L.next == null) return L;
    else
```

```
Node front = L
Node rest = L.next
L.next = null
Node restRev = reverse(rest)
appendToEnd(front,restRev)
```

- We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
    else if(L.next == null) return L; non-recursive
    else
```

```
Node front = L
Node rest = L.next
L.next = null
Node restRev = reverse(rest)
appendToEnd(front,restRev)
```

- We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
    else if(L.next == null) return L; non-recursive
    else
```

```
Node front = L non-recursive
Node rest = L.next
L.next = null
Node restRev = reverse(rest)
appendToEnd(front,restRev)
```

- We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
    else if(L.next == null) return L; non-recursive
    else
```

```
Node front = L non-recursive
```

Node front = L non-recursive
Node rest = L.next non-recursive
Node rest = L.next non-recursive
L.next = null
L.next = null
Node restRev = reverse(rest)
Node restRev = reverse(rest)
appendToEnd(front,restRev)

```
appendToEnd(front,restRev)
```

- We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
else if(L.next == null) return L; non-recursive
else
```

```
Node front = L non-recursive
Node rest = L.next non-recursive
L.next = null non-recursive
Node restRev = reverse(rest)
appendToEnd(front,restRev)
```

- We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive

ANALYSIS

reverse(Node L):

if(L==null) return $L ;$	non-recursive
else if(L.next $==$ null) return $L ;$	non-recursive
else	
Node front $=L$	non-recursive
Node rest $=L . n e x t$	non-recursive
L.next $=n u l l$	non-recursive
Node restRev $=$ reverse(rest)	recursive
appendToEnd(front,restRev)	

- We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive

ANALYSIS

reverse(Node L):

- We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive

ANALYSIS

reverse(Node L):

```
if(L==null) return L;
else if(L.next == null) return L;
else
```

Node front $=\mathrm{L}$	non-recursive
Node rest $=\mathrm{L}$. next	non-recursive
L.next $=$ null	non-recursive
Node restRev $=$ reverse(rest)	recursive
appendToEnd(front,restRev)	non-recursive

- What is the runtime of the non-recursive work?

ANALYSIS

reverse(Node L):

```
if(L==null) return L;
    else if(L.next == null) return L;
    else
```

Node front $=\mathrm{L}$	non-recursive
Node rest $=\mathrm{L}$. next	non-recursive
L.next $=\mathrm{null}$	non-recursive
Node restRev $=$ reverse(rest)	recursive
appendToEnd(front, restRev)	non-recursive

- What is the runtime of the non-recursive work?
- Depends on the case!

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
else if(L.next == null) return L; non-recursive
else
```

Node front $=\mathrm{L}$	non-recursive
Node rest $=\mathrm{L}$. next	non-recursive
L.next $=\mathrm{null}$	non-recursive
Node restRev = reverse(rest)	recursive
appendToEnd(front,restRev)	non-recursive

- What is the runtime of the non-recursive work?
- Depends on the case! There are two base cases, $\mathrm{n}=0$ and $\mathrm{n}=1$, but let's look at the $\mathrm{n}>1$ case first

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
else if(L.next == null) return L; non-recursive
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \\
Node rest \(=\mathrm{L}\). next & non-recursive \\
L.next \(=\mathrm{null}\) & non-recursive \\
Node restRev = reverse(rest) & recursive \\
appendToEnd(front,restRev) & non-recursive
\end{tabular}
```

- What is the runtime of the non-recursive work?
- Depends on the case! There are two base cases, $\mathrm{n}=0$ and $\mathrm{n}=1$, but let's look at the $\mathrm{n}>1$ case first
- Suppose that appendToEnd takes O(n) time

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
else if(L.next == null) return L; non-recursive
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \\
Node rest \(=\mathrm{L}\). next & non-recursive \\
L.next \(=\mathrm{null}\) & non-recursive \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive
\end{tabular}
```

- What is the runtime of the non-recursive work?
- Let's look at each piece

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
else if(L.next == null) return L; non-recursive
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \\
L.next \(=\) null & non-recursive \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front,restRev) & non-recursive
\end{tabular}
```

- What is the runtime of the non-recursive work?
- Let's look at each piece

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
    else if(L.next == null) return L; non-recursive
    else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front,restRev) & non-recursive
\end{tabular}
```

- What is the runtime of the non-recursive work?
- Let's look at each piece

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
    else if(L.next == null) return L; non-recursive
    else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive
\end{tabular}
```

- What is the runtime of the non-recursive work?
- Let's look at each piece

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive
    else if(L.next == null) return L; non-recursive
    else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the runtime of the non-recursive work?
- Let's look at each piece

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L;
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the runtime of the non-recursive work?
- Let's look at each piece

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L; non-recursive O(1)
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the runtime of the non-recursive work?
- Here, n is the size of the list starting at L

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L; non-recursive O(1)
else
\begin{tabular}{ll} 
Node front \(=L\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L.next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front,restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the runtime of the non-recursive work?
- This is $O(n)$ total, which means we can upper bound the non-recursive work by $\mathrm{c}_{0}+\mathrm{c}_{1} * \mathrm{n}$

ANALYSIS

reverse(Node L):

```
if(L==null) return L;
else if(L.next == null) return L;
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

non-recursive $O(1)$
non-recursive $O(1)$
non-recursive $0(1)$
non-recursive $O(1)$
non-recursive O(1)
non-recursive $O(n)$

- What is the total runtime then?

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L; non-recursive O(1)
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the total runtime then?
- Let the functions runtime be denoted as $T(n)$, where n is the number of elements

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L;
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the total runtime then?
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+$ recursive work

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L;
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front,restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the total runtime then?
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+$ recursive work
- What is the recursive work?

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L; non-recursive O(1)
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front,restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the total runtime then?
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+$ recursive work
- What is the recursive work? rest is size $\mathrm{n}-1$

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L;
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

non-recursive $O(1)$
non-recursive $O(1)$
non-recursive O(1)
non-recursive $0(1)$
non-recursive O(1)
non-recursive O(n)

- What is the total runtime then?
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+T(n-1)$

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L; non-recursive O(1)
else
\begin{tabular}{ll} 
Node front \(=\mathrm{L}\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front, restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the total runtime then?
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+T(n-1)$
- This is the recurrence! It's a function that uses itself in its definition

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
else if(L.next == null) return L; non-recursive O(1)
else
\begin{tabular}{ll} 
Node front \(=L\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L.next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front,restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the total runtime then?
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+T(n-1)$
- This is the recurrence! It's a function that uses itself in its definition
- Fibonnacci numbers are an example

ANALYSIS

reverse(Node L):

```
if(L==null) return L; non-recursive O(1)
    else if(L.next == null) return L;
    else
\begin{tabular}{ll} 
Node front \(=L\) & non-recursive \(\mathbf{O ( 1 )}\) \\
Node rest \(=\mathrm{L}\). next & non-recursive \(\mathbf{O ( 1 )}\) \\
L. next \(=\) null & non-recursive \(\mathbf{O ( 1 )}\) \\
Node restRev \(=\) reverse(rest) & recursive \\
appendToEnd(front,restRev) & non-recursive \(\mathbf{O ( n )}\)
\end{tabular}
```

- What is the total runtime then?
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+T(n-1)$
- This is the recurrence! It's a function that uses itself in its definition
- Fibonnacci numbers are an example. What's missing?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{T}(\mathrm{n}-1)$ when $\mathrm{n}>1$

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- How do we solve this recurrence?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- How do we solve this recurrence?
- We can unroll it and see if a pattern emerges
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{T}(\mathrm{n}-1)$

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- How do we solve this recurrence?
- We can unroll it and see if a pattern emerges
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{T}(\mathrm{n}-1)$
- $T(n)=c_{0}+c_{1}{ }^{*} n+c_{0}+c_{1}{ }^{*}(n-1)+T(n-2)$

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- How do we solve this recurrence?
- We can unroll it and see if a pattern emerges
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2)$
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*}(\mathrm{n}-1)+\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*}(\mathrm{n}-2)+\mathrm{T}(\mathrm{n}-3)$
- $T(n)=3 c_{0}+c_{1}{ }^{*}(n+(n-1)+(n-2))+T(n-3)$
- What are the patterns?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- What are the patterns?
- Each time we add $1 c_{0}$
- Each time we add ' n ' c_{1}

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{T}(\mathrm{n}-1)$ when $\mathrm{n}>1$
- What are the patterns?
- Each time we add $1 c_{0}$
- Each time we add ' n ' c_{1}
- But n is getting reduced by one every time

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- What are the patterns?
- Each time we add $1 c_{0}$
- Each time we add ' n ' c_{1}
- But n is getting reduced by one every time
- How many times does this call itself?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- What are the patterns?
- Each time we add $1 c_{0}$
- Each time we add ' n ' c_{1}
- But n is getting reduced by one every time
- How many times does this call itself?
- $n-1$, because 1 is a base case

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- What are the patterns?
- Each time we add $1 c_{0}$
- Each time we add ' n ' c_{1}
- But n is getting reduced by one every time
- How many times does this call itself?
- $n-1$, because 1 is a base case
- What then is the closed form of this recurrence?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{T}(\mathrm{n}-1)$ when $\mathrm{n}>1$
- Closed form?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- Closed form?
- $\mathrm{T}(\mathrm{n})=$

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- Closed form?
- $T(n)=(n-1) * c_{0}+$

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- Closed form?
- $T(n)=(n-1) * c_{0}+\sum i^{*} c_{1}$

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{T}(\mathrm{n}-1)$ when $\mathrm{n}>1$
- Closed form?
- $\mathrm{T}(\mathrm{n})=(\mathrm{n}-1)^{*} \mathrm{c}_{0}+(\mathrm{n}-1)^{*}(\mathrm{n}-2) / 2{ }^{*} \mathrm{c}_{1}$

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- Closed form?
- $\mathrm{T}(\mathrm{n})=(\mathrm{n}-1){ }^{*} \mathrm{c}_{0}+(\mathrm{n}-1)^{*}(\mathrm{n}-2) / 2^{*} \mathrm{c}_{1}$
- Is this all?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- Closed form?
- $T(n)=(n-1) * c_{0}+(n-1)^{*}(n-2) / 2 * c_{1}+d_{1}$
- Is this all?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- Closed form?
- $\mathrm{T}(\mathrm{n})=(\mathrm{n}-1)^{*} \mathrm{c}_{0}+(\mathrm{n}-1)^{*}(\mathrm{n}-2) / 2{ }^{*} \mathrm{c}_{1}+\mathrm{d}_{1}$
- What is the upper bound of this function?

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $T(n)=c_{0}+c_{1}{ }^{*} n+T(n-1)$ when $n>1$
- Closed form?
- $\mathrm{T}(\mathrm{n})=(\mathrm{n}-1)^{*} \mathrm{c}_{0}+(\mathrm{n}-1)^{*}(\mathrm{n}-2) / 2{ }^{*} \mathrm{c}_{1}+\mathrm{d}_{1}$
- What is the upper bound of this function?
- $O\left(n^{2}\right)$

ANALYSIS

- Recurrence relation for reverse
- $T(n)=d_{0}$ when $n=0$
- $T(n)=d_{1}$ when $n=1$
- $\mathrm{T}(\mathrm{n})=\mathrm{c}_{0}+\mathrm{c}_{1}{ }^{*} \mathrm{n}+\mathrm{T}(\mathrm{n}-1)$ when $\mathrm{n}>1$
- Closed form?
- $\mathrm{T}(\mathrm{n})=(\mathrm{n}-1)^{*} \mathrm{c}_{0}+(\mathrm{n}-1)^{*}(\mathrm{n}-2) / 2{ }^{*} \mathrm{c}_{1}+\mathrm{d}_{1}$
- What is the upper bound of this function?
- $O\left(n^{2}\right)$ the $O(n)$ appendToEnd is what costs us

ANALYSIS

- Let's consider binary search again

ANALYSIS

- Let's consider binary search again
- We mentioned last week that it was $O(\log n)$

ANALYSIS

- Let's consider binary search again
- We mentioned last week that it was O(log n)
- Can you use recurrence relations to show this for a recursive implementation?

ANALYSIS

- Let's consider binary search again
- We mentioned last week that it was O(log n)
- Can you use recurrence relations to show this for a recursive implementation?
BinarySearch(Integer[] array, Integer value, int lo, int hi)

```
if(hi < lo) return null;
mid = high/2 + low/2
if(A[mid] > value)
    return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
    return BinarySearch(array,value,lo,mid)
    else return mid
```


ANALYSIS

```
BinarySearch(Integer[] array, Integer value, int lo, int hi)
    if(hi < lo) return null;
    mid = high/2 + low/2
    if(A[mid] > value)
    return BinarySearch(array,value,mid,hi)
    else if(A[mid] < value)
    return BinarySearch(array,value,lo,mid)
    else return mid
```


ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

```
if(hi < lo) return null;
mid = high/2 + low/2
if(A[mid] > value)
    return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
    return BinarySearch(array,value,lo,mid)
    else return mid
```

- What steps do we need to take?

ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

```
if(hi < lo) return null;
mid = high/2 + low/2
if(A[mid] > value)
    return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
    return BinarySearch(array,value,lo,mid)
    else return mid
```

- What steps do we need to take?
- Break down into recursive and non-recursive

ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

```
if(hi < lo) return null;
mid = high/2 + low/2
if(A[mid] > value)
    return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
    return BinarySearch(array,value,lo,mid)
else return mid
```

- What steps do we need to take?
- Break down into recursive and non-recursive
- Calculate the non-recursive runtimes

ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

```
if(hi < lo) return null;
mid = high/2 + low/2
if(A[mid] > value)
    return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
    return BinarySearch(array,value,lo,mid)
else return mid
```

- What steps do we need to take?
- Break down into recursive and non-recursive
- Calculate the non-recursive runtimes
- Produce the recurrence

ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

```
if(hi < lo) return null;
mid = high/2 + low/2
if(A[mid] > value)
    return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
    return BinarySearch(array,value,lo,mid)
else return mid
```

- What steps do we need to take?
- Break down into recursive and non-recursive
- Calculate the non-recursive runtimes
- Produce the recurrence
- Roll out the recurrence to observe a pattern

ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

```
if(hi < lo) return null;
mid = high/2 + low/2
if(A[mid] > value)
    return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
    return BinarySearch(array,value,lo,mid)
else return mid
```

- What steps do we need to take?
- Break down into recursive and non-recursive
- Calculate the non-recursive runtimes
- Produce the recurrence
- Roll out the recurrence to observe a pattern
- Upper bound the closed form

ANALYSIS

- What is the recurrence we produced?

ANALYSIS

- What is the recurrence we produced?
- $T(n)=d_{0}$ for $n=0$

ANALYSIS

- What is the recurrence we produced?
- $T(n)=d_{0}$ for $n=0$
- $T(n)=c_{0}+T(n / 2)$ for $n>0$

ANALYSIS

- What is the recurrence we produced?
- $T(n)=d_{0}$ for $n=0$
- $T(n)=c_{0}+T(n / 2)$ for $n>0$
- Important to note

ANALYSIS

- What is the recurrence we produced?
- $T(n)=d_{0}$ for $n=0$
- $T(n)=c_{0}+T(n / 2)$ for $n>0$
- Important to note
- How many times can we divide n by 2 until we get 1 ?

ANALYSIS

- What is the recurrence we produced?
- $T(n)=d_{0}$ for $n=0$
- $T(n)=c_{0}+T(n / 2)$ for $n>0$
- Important to note
- How many times can we divide n by 2 until we get 1 ?
- $\log _{2} \mathrm{n}$

NEXT LECTURE

- Binary search recurrence

NEXT LECTURE

- Binary search recurrence
- More recurrences

NEXT LECTURE

- Binary search recurrence
- More recurrences
- Amortized analysis

