
CSE 332
JUNE 26TH – ANALYSIS OF THE HEAP

ASSORTED MINUTIAE
•  Some problems with EX02 and EX03

ASSORTED MINUTIAE
•  Some problems with EX02 and EX03

•  Deadline will be extended to Friday

ASSORTED MINUTIAE
•  Some problems with EX02 and EX03

•  Deadline will be extended to Friday
•  If solutions aren’t resolved by tomorrow, it

will be converted to a pdf submission on
canvas.

ASSORTED MINUTIAE
•  Some problems with EX02 and EX03

•  Deadline will be extended to Friday
•  If solutions aren’t resolved by tomorrow, it

will be converted to a pdf submission on
canvas.

•  P1 should be out and you should have
begun work

ASSORTED MINUTIAE
•  Some problems with EX02 and EX03

•  Deadline will be extended to Friday
•  If solutions aren’t resolved by tomorrow, it

will be converted to a pdf submission on
canvas.

•  P1 should be out and you should have
begun work
•  Checkpoint moved to Friday

TODAY’S LECTURE
•  bigO and analysis

TODAY’S LECTURE
•  bigO and analysis
•  Analyzing the heap

TODAY’S LECTURE
•  bigO and analysis
•  Analyzing the heap
•  Floyd’s method

REVIEW FROM LAST WEEK
•  Heap implementation

REVIEW FROM LAST WEEK
•  Heap implementation

•  Complete

REVIEW FROM LAST WEEK
•  Heap implementation

•  Complete
•  Heap property

REVIEW FROM LAST WEEK
•  Heap implementation

•  Complete
•  Heap property
•  Array implementation (0 or 1 indexing)

REVIEW FROM LAST WEEK
•  Heap implementation

•  Complete
•  Heap property
•  Array implementation (0 or 1 indexing)

REVIEW FROM LAST WEEK
•  Heap implementation

•  Complete
•  Heap property
•  Array implementation (0 or 1 indexing)
•  Percolate up and percolate down

REVIEW FROM LAST WEEK
•  Heap implementation

•  Complete
•  Heap property
•  Array implementation (0 or 1 indexing)
•  Percolate up and percolate down
•  d-heaps

REVIEW FROM LAST WEEK
•  Algorithm analysis

REVIEW FROM LAST WEEK
•  Algorithm analysis

•  Counting operations strictly is unreliable

REVIEW FROM LAST WEEK
•  Algorithm analysis

•  Counting operations strictly is unreliable
•  Want some way for us to compare

functions

REVIEW FROM LAST WEEK
•  Algorithm analysis

•  Counting operations strictly is unreliable
•  Want some way for us to compare

functions
•  bigO – asymptotic runtime bounds

REVIEW FROM LAST WEEK
•  Algorithm analysis

•  Counting operations strictly is unreliable
•  Want some way for us to compare

functions
•  bigO – asymptotic runtime bounds
•  f(n) = O(g(n)) if there exists some c

and n0 such that f(n) < c*g(n) for
some c > 0 and all n > n0!

BIG-O NOTATION
•  Big-O is for upper bounds.

!

BIG-O NOTATION
•  Big-O is for upper bounds.
•  It’s equivalent for lower bounds is big

Omega

!

BIG-O NOTATION
•  Big-O is for upper bounds.
•  It’s equivalent for lower bounds is big

Omega
Formally, a function f(n) is Ω(g(n)) if
there exists a c and n0 > 0 such that:
•  For all n > n0, f(n) > c*g(n)!

!

BIG-O NOTATION
•  Big-O is for upper bounds.
•  It’s equivalent for lower bounds is big

Omega
Formally, a function f(n) is Ω(g(n)) if
there exists a c and n0 > 0 such that:
•  For all n > n0, f(n) > c*g(n)!

•  If a function f(n) is in O(g(n)) and
Ω(g(n))

!

BIG-O NOTATION
•  If a function f(n) is in O(g(n)) and
Ω(g(n)), then g(n) is a tight bound on
f(n), we call this big theta.

!

BIG-O NOTATION
•  If a function f(n) is in O(g(n)) and
Ω(g(n)), then g(n) is a tight bound on
f(n), we call this big theta.

•  Formally, if f(n) is in O(g(n)) and
Ω(g(n)), then f(n) is in θ(g(n))!

•  Note that the two will have different c
and n0

!

BIG O NOTATION
•  What does this help us with?

•  Sort algorithms into families

!

BIG O NOTATION
•  What does this help us with?

•  Sort algorithms into families
•  O(1): constant
•  O(log n): logarithmic
•  O(n) : linear
•  O(n2): quadratic
•  O(nk): polynomial
•  O(kn): exponential

!

BIG O NOTATION
•  What does this help us with?

!

BIG O NOTATION
•  What does this help us with?

•  The constant multiple c lets us organize
similar algorithms together.

•  Remember that loga k and logb k differ by
a constant factor?

!

BIG O NOTATION
•  What does this help us with?

•  The constant multiple c lets us organize
similar algorithms together.

•  Remember that loga k and logb k differ by
a constant factor?

•  That makes all logs in the same family

!

CORRECTNESS ANALYSIS
•  How do we show an algorithm is

correct?

!

CORRECTNESS ANALYSIS
•  How do we show an algorithm is

correct?
•  Need to look at the approach

!

BINARY SEARCH (AGAIN)
public int binarySearch(int[] data, int toFind){!

int low = 0; int high = data.length-1;!

while(low <= high){!
!int mid = (low+high)/2;!

!if(toFind>mid) low = mid+1; continue;!

!else if(toFind<mid) high = mid-1; continue; !

!else return mid;!

}!
return -1;!

}!

!

BINARY SEARCH CORRECTNESS
•  Prove binary search returns the correct

answer

!

BINARY SEARCH CORRECTNESS
•  Prove binary search returns the correct

answer
•  Need property of sortedness

!

BINARY SEARCH CORRECTNESS
•  Prove binary search returns the correct

answer
•  Need property of sortedness
•  For all pairs i,j in the array:

•  If A[i] < A[j], then i < j!
!

BINARY SEARCH CORRECTNESS
•  Prove binary search returns the correct

answer
•  Need property of sortedness
•  For all pairs i,j in the array:

•  If A[i] < A[j], then i < j!
•  Binary search always chooses the

correct side

BINARY SEARCH CORRECTNESS
•  Prove binary search returns the correct

answer
•  Need property of sortedness
•  For all pairs i,j in the array:

•  If A[i] < A[j], then i < j!
•  Binary search always chooses the

correct side
•  End case: low = high

ANALYSIS
•  Let’s use these analytical approaches to

solve some things about heap functions

!

ANALYSIS
•  Let’s use these analytical approaches to

solve some things about heap functions
•  First, let’s do a quick review of heap

properties

!

REVIEW

15 30

80 20

10
•  Is this a heap?

REVIEW

15 30

80 20

10
•  Is this a heap?
•  No. Why?

REVIEW
•  Is this a heap?

450

3

1

75

50

8 60

10 10

REVIEW
•  Is this a heap?
•  No. Why

450

3

1

75

50

8 60

10 10

REVIEW
•  Is this a heap?
•  No. Why

450

3

1

75

50

8 60

10 10

REVIEW
•  Is this a heap?

99 60 40

80 20

10

50 700

85

REVIEW
•  Is this a heap?
•  Yes, Heap

+ Complete

99 60 40

80 20

10

50 700

85

REVIEW
•  Heaps

•  Properties
•  Completeness
•  Heap property

•  Implementation
•  Array (0 v 1 indexing)

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

REVIEW
•  With 0 indexing:

•  Parent:
•  Left-child:
•  Right-child:

!

REVIEW
•  With 0 indexing:

•  Parent: (i-1)/2
•  Left-child:
•  Right-child:

!

REVIEW
•  With 0 indexing:

•  Parent: (i-1)/2
•  Left-child: 2i+1
•  Right-child:

!

REVIEW
•  With 0 indexing:

•  Parent: (i-1)/2
•  Left-child: 2i+1
•  Right-child: 2i+2

!

REVIEW
•  With 1 indexing:

•  Parent:
•  Left-child:
•  Right-child:

!

REVIEW
•  With 1 indexing:

•  Parent: i/2
•  Left-child:
•  Right-child:

!

REVIEW
•  With 1 indexing:

•  Parent: i/2
•  Left-child: 2i
•  Right-child:

!

REVIEW
•  With 1 indexing:

•  Parent: i/2
•  Left-child: 2i
•  Right-child: 2i+1

!

REVIEW
•  What about for a d-heap?

!

REVIEW
•  What about for a d-heap?
•  Arithmetic changes slightly, but it is still

doable

!

HEAPS
•  Operations

•  Insert: adds a data, priority pair into the heap

HEAPS
•  Operations

•  Insert: adds a data, priority pair into the heap
•  deleteMin: returns and removes the item of

smallest priority from the heap

HEAPS
•  Operations

•  Insert: adds a data, priority pair into the heap
•  deleteMin: returns and removes the item of

smallest priority from the heap
•  changePriority: changes the priority of a

particular item in the heap

HEAPS
•  Operations

•  Insert: adds a data, priority pair into the heap
•  deleteMin: returns and removes the item of

smallest priority from the heap
•  changePriority: changes the priority of a

particular item in the heap

HEAPS
•  Operations

•  Insert: adds a data, priority pair into the heap
•  deleteMin: returns and removes the item of

smallest priority from the heap
•  changePriority: changes the priority of a

particular item in the heap
•  What are the (worst-case) runtimes for these

operations?

HEAPS
•  Insert:

•  Add the element at the bottom of the tree

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree?

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree? O(1)!

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree? O(1)!

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree? O(1)!
•  Percolating up?

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree? O(1)!
•  Percolating up? O(height)!

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree? O(1)!
•  Percolating up? O(height)!

•  What is the height of a heap?

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree? O(1)!
•  Percolating up? O(height)!

•  What is the height of a heap? log2 n!

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree? O(1)!
•  Percolating up? O(height) O(log n)!

•  What is the height of a heap? log2 n!

HEAPS
•  deleteMin:!

HEAPS
•  deleteMin:

•  Move the last element up to the top of the tree
•  Percolate that element down
•  Return the original root of the tree.

HEAPS
•  deleteMin:

•  Move the last element up to the top of the tree
•  Percolate that element down
•  Return the original root of the tree.

•  Copying element?

HEAPS
•  deleteMin:

•  Move the last element up to the top of the tree
•  Percolate that element down
•  Return the original root of the tree.

•  Copying element? O(1)

HEAPS
•  deleteMin:

•  Move the last element up to the top of the tree
•  Percolate that element down
•  Return the original root of the tree.

•  Copying element? O(1)
•  Percolating down?

HEAPS
•  deleteMin:

•  Move the last element up to the top of the tree
•  Percolate that element down
•  Return the original root of the tree.

•  Copying element? O(1)
•  Percolating down? O(log n)

HEAPS
•  deleteMin:

•  Move the last element up to the top of the tree
•  Percolate that element down
•  Return the original root of the tree.

•  Copying element? O(1)
•  Percolating down? O(log n)
•  Returning element?

HEAPS
•  deleteMin:

•  Move the last element up to the top of the tree
•  Percolate that element down
•  Return the original root of the tree.

•  Copying element? O(1)
•  Percolating down? O(log n)
•  Returning element? O(1)

HEAPS
•  changePriority:

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

•  Finding in a heap?

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

•  Finding in a heap? O(n)

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

•  Finding in a heap? O(n) Why?

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

•  Finding in a heap? O(n) Why?
•  Heap property does not give us the divide and

conquer benefit

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

•  Finding in a heap? O(n) Why?
•  Heap property does not give us the divide and

conquer benefit
•  Percolate up/down?

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

•  Finding in a heap? O(n) Why?
•  Heap property does not give us the divide and

conquer benefit
•  Percolate up/down? O(log n)

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

•  Finding in a heap? O(n) Why?
•  Heap property does not give us the divide and

conquer benefit
•  Percolate up/down? O(log n)
•  On average, is it faster to percolate up or down?

ANALYSIS
•  Let’s find an interesting algorithm to

analyze

!

ANALYSIS
•  Let’s find an interesting algorithm to

analyze
•  Given an array of length n, how do we

make that array into a heap?

!

ANALYSIS
•  Let’s find an interesting algorithm to

analyze
•  Given an array of length n, how do we

make that array into a heap?
•  Naïve approach?

•  Make a new heap and add each element
of the array into the heap

!

ANALYSIS
•  Let’s find an interesting algorithm to

analyze
•  Given an array of length n, how do we

make that array into a heap?
•  Naïve approach?

•  Make a new heap and add each element
of the array into the heap

•  How long to finish?

!

FUN FACTS!
•  Is it really O(n log n)?

•  Is it really O(n log n)?
•  Early insertions are into empty trees

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, adding to

the end of a linked list.

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.
1+2+3+4+5…

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.
1+2+3+4+5…

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.
1+2+3+4+5…

What is this summation?

FUN FACTS!

FUN FACTS!

FUN FACTS!

•  What does this mean?

FUN FACTS!

•  What does this mean?
•  Summing k from 1 to n is still O(n2)!

FUN FACTS!

•  What does this mean?
•  Summing k from 1 to n is still O(n2)!
•  Similarly, summing log(k) from 1 to n is
O(n log n) !

ANALYSIS
•  Naïve approach:

•  Must add n items
!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long?

!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long? log(n)!

!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long? log(n)!
•  Whole operation is O(log(n))!

!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long? log(n)!
•  Whole operation is O(log(n))!
•  Can we do better?

!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long? log(n)!
•  Whole operation is O(log(n))!
•  Can we do better?

•  What is better?

!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long? log(n)!
•  Whole operation is O(log(n))!
•  Can we do better?

•  What is better? O(n)

!

HEAPS
•  Facts of binary trees

HEAPS
•  Facts of binary trees

•  Increasing the height by one doubles the number
of possible nodes

HEAPS
•  Facts of binary trees

•  Increasing the height by one doubles the number
of possible nodes

•  Therefore, a complete binary tree has half of its
nodes in the leaves

HEAPS
•  Facts of binary trees

•  Increasing the height by one doubles the number
of possible nodes

•  Therefore, a complete binary tree has half of its
nodes in the leaves

•  A new piece of data is much more likely to have
to percolate down to the bottom than be the
smallest item in the heap

BUILDHEAP
•  So a naïve buildheap takes O(n log n)

BUILDHEAP
•  So a naïve buildheap takes O(n log n)

•  Why implement at all?

BUILDHEAP
•  So a naïve buildheap takes O(n log n)

•  Why implement at all?
•  If we can get it O(n)!

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find?

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find? Size / 2!

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find? Size / 2!
•  Percolate down each node as necessary

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find? Size / 2!
•  Percolate down each node as necessary

•  Wait! Percolate down is O(log n)!
•  This is an O(n log n) approach!

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  Leaves don’t move at all: Height = 0

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  Leaves don’t move at all: Height = 0

•  This is half the nodes in the tree

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  1/2 of the nodes don’t move:

•  These are leaves – Height = 0

•  1/4 can move at most one
•  1/8 can move at most two

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  1/2 of the nodes don’t move:

•  These are leaves – Height = 0

•  1/4 can move at most one
•  1/8 can move at most two …

FLOYD’S METHOD

•  Thanks Wolfram Alpha!!

FLOYD’S METHOD

•  Thanks Wolfram Alpha!
•  Does this look like an easier summation?!

FLOYD’S METHOD

FLOYD’S METHOD

•  This is a must know summation!!

FLOYD’S METHOD

•  This is a must know summation!
•  1/2 + 1/4 + 1/8 + … = 1!

FLOYD’S METHOD

•  This is a must know summation!
•  1/2 + 1/4 + 1/8 + … = 1
•  How do we use this to prove our

complicated summation?!

FLOYD’S METHOD
1/2 + 1/4 + 1/8 … !… + 1/2n = 1!

FLOYD’S METHOD
1/2 + 1/4 + 1/8 … !… + 1/2n = 1!

 1/4 + 1/8 … !… + 1/2n = 1/2!

 1/8 … !… + 1/2n = 1/4!

!

FLOYD’S METHOD
1/2 + 1/4 + 1/8 … !… + 1/2n = 1!

 1/4 + 1/8 … !… + 1/2n = 1/2!

 1/8 … !… + 1/2n = 1/4!

•  Vertical columns sum to:
 i/2^i, which is what we want

•  What is the right summation?

•  Our original summation plus 1
!

!

FLOYD’S METHOD

FLOYD’S METHOD

•  This means that the number of swaps we
perform in Floyd’s method is 2 times the
size… So Floyd’s method is O(n)!

NEXT LECTURE

•  Back to analysis

NEXT LECTURE

•  Back to analysis
•  Recurrences and analyzing recursive

functions

