CSE 332

JUNE 26TH - ANALYSIS OF THE HEAP

ASSORTED MINUTIAE

- Some problems with EX02 and EX03

ASSORTED MINUTIAE

- Some problems with EX02 and EX03
- Deadline will be extended to Friday

ASSORTED MINUTIAE

- Some problems with EX02 and EX03
- Deadline will be extended to Friday
- If solutions aren't resolved by tomorrow, it will be converted to a pdf submission on canvas.

ASSORTED MINUTIAE

- Some problems with EX02 and EX03
- Deadline will be extended to Friday
- If solutions aren't resolved by tomorrow, it will be converted to a pdf submission on canvas.
- P1 should be out and you should have begun work

ASSORTED MINUTIAE

- Some problems with EX02 and EX03
- Deadline will be extended to Friday
- If solutions aren't resolved by tomorrow, it will be converted to a pdf submission on canvas.
- P1 should be out and you should have begun work
- Checkpoint moved to Friday

TODAY'S LECTURE

- bigO and analysis

TODAY'S LECTURE

- bigO and analysis
- Analyzing the heap

TODAY'S LECTURE

- bigO and analysis
- Analyzing the heap
- Floyd's method

REVIEW FROM LAST WEEK

- Heap implementation

REVIEW FROM LAST WEEK

- Heap implementation
- Complete

REVIEW FROM LAST WEEK

- Heap implementation
- Complete
- Heap property

REVIEW FROM LAST WEEK

- Heap implementation
- Complete
- Heap property
- Array implementation (0 or 1 indexing)

REVIEW FROM LAST WEEK

- Heap implementation
- Complete
- Heap property
- Array implementation (0 or 1 indexing)

REVIEW FROM LAST WEEK

- Heap implementation
- Complete
- Heap property
- Array implementation (0 or 1 indexing)
- Percolate up and percolate down

REVIEW FROM LAST WEEK

- Heap implementation
- Complete
- Heap property
- Array implementation (0 or 1 indexing)
- Percolate up and percolate down
- d-heaps

REVIEW FROM LAST WEEK

- Algorithm analysis

REVIEW FROM LAST WEEK

- Algorithm analysis
- Counting operations strictly is unreliable

REVIEW FROM LAST WEEK

- Algorithm analysis
- Counting operations strictly is unreliable
- Want some way for us to compare functions

REVIEW FROM LAST WEEK

- Algorithm analysis
- Counting operations strictly is unreliable
- Want some way for us to compare functions
- bigO - asymptotic runtime bounds

REVIEW FROM LAST WEEK

- Algorithm analysis
- Counting operations strictly is unreliable
- Want some way for us to compare functions
- bigO - asymptotic runtime bounds
- $f(n)=O(g(n))$ if there exists some c and n_{0} such that $f(n)<c * g(n)$ for some $\mathrm{c}>0$ and all $\mathrm{n}>\mathrm{n}_{0}$

BIG-O NOTATION

- Big-O is for upper bounds.

BIG-O NOTATION

- Big-O is for upper bounds.
- It's equivalent for lower bounds is big Omega

BIG-O NOTATION

- Big-O is for upper bounds.
- It's equivalent for lower bounds is big Omega
Formally, a function $f(n)$ is $\Omega(g(n))$ if there exists acand $n_{0}>0$ such that:
- For all $n \geq n_{0}, f(n)>c * g(n)$

BIG-O NOTATION

- Big-O is for upper bounds.
- It's equivalent for lower bounds is big Omega

Formally, a function $f(n)$ is $\Omega(g(n))$ if there exists acc and $n_{0}>0$ such that:

- For all $n \geq n_{0}, f(n)>c * g(n)$
- If a function $f(n)$ is in $O(g(n))$ and今($\mathrm{g}(\mathrm{n})$)

BIG-O NOTATION

- If a function $f(n)$ is in $\mathbf{O (g (n))}$ and $\Omega(g(n))$, then $g(n)$ is a tight bound on $f(n)$, we call this big theta.

BIG-O NOTATION

- If a function $f(n)$ is in $\mathbf{O (g (n))}$ and $\Omega(g(n))$, then $g(n)$ is a tight bound on $f(n)$, we call this big theta.
- Formally, if $f(n)$ is in $O(g(n))$ and $\Omega(g(n))$, then $f(n)$ is in $\theta(g(n))$
- Note that the two will have different c and n_{0}

BIG O NOTATION

- What does this help us with?
- Sort algorithms into families

BIG O NOTATION

- What does this help us with?
- Sort algorithms into families
- $O(1)$: constant
- $\mathrm{O}(\log \mathrm{n})$: logarithmic
- $O(n)$: linear
- $O\left(n^{2}\right)$: quadratic
- $O\left(n^{k}\right)$: polynomial
- $\mathrm{O}\left(\mathrm{k}^{\mathrm{n}}\right)$: exponential

BIG O NOTATION

- What does this help us with?

BIG O NOTATION

- What does this help us with?
- The constant multiple c lets us organize similar algorithms together.
- Remember that $\log _{\mathrm{a}} \mathrm{k}$ and $\log _{\mathrm{b}} \mathrm{k}$ differ by a constant factor?

BIG O NOTATION

- What does this help us with?
- The constant multiple c lets us organize similar algorithms together.
- Remember that $\log _{\mathrm{a}} \mathrm{k}$ and $\log _{\mathrm{b}} \mathrm{k}$ differ by a constant factor?
- That makes all logs in the same family

CORRECTNESS ANALYSIS

- How do we show an algorithm is correct?

CORRECTNESS ANALYSIS

- How do we show an algorithm is correct?
- Need to look at the approach

BINARY SEARCH (AGAIN)

```
public int binarySearch(int[] data, int toFind){
```

int low = 0; int high = data.length-1;
while(low <= high) \{
int mid = (low+high)/2;
if(toFind>mid) low = mid+1; continue;
else if(toFind<mid) high = mid-1; continue;
else return mid;
\}
return -1;
\}

BINARY SEARCH CORRECTNESS

- Prove binary search returns the correct answer

BINARY SEARCH CORRECTNESS

- Prove binary search returns the correct answer
- Need property of sortedness

BINARY SEARCH CORRECTNESS

- Prove binary search returns the correct answer
- Need property of sortedness
- For all pairs i, j in the array:
- If $A[i] \leq A[j]$, then $i \leq j$

BINARY SEARCH CORRECTNESS

- Prove binary search returns the correct answer
- Need property of sortedness
- For all pairs i, j in the array:
- If $A[i] \leq A[j]$, then $i \leq j$
- Binary search always chooses the correct side

BINARY SEARCH CORRECTNESS

- Prove binary search returns the correct answer
- Need property of sortedness
- For all pairs i, j in the array:
- If $A[i] \leq A[j]$, then $i \leq j$
- Binary search always chooses the correct side
- End case: low = high

ANALYSIS

- Let's use these analytical approaches to solve some things about heap functions

ANALYSIS

- Let's use these analytical approaches to solve some things about heap functions
- First, let's do a quick review of heap properties

REVIEW

- Is this a heap?

REVIEW

- Is this a heap?
- No. Why?

REVIEW

- Is this a heap?

REVIEW

- Is this a heap?
- No. Why

REVIEW

- Is this a heap?
- No. Why

REVIEW

- Is this a heap?

REVIEW

- Is this a heap?
- Yes, Heap + Complete

REVIEW

- Heaps
- Properties
- Completeness
- Heap property
- Implementation
- Array (0 v 1 indexing)

REVIEW

- Array property

REVIEW

- Array property

REVIEW

- Array property

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

REVIEW

- With 0 indexing:
- Parent:
- Left-child:
- Right-child:

REVIEW

- With 0 indexing:
- Parent: (i-1)/2
- Left-child:
- Right-child:

REVIEW

- With 0 indexing:
- Parent: ($\mathrm{i}-1$)/2
- Left-child: $2 \mathrm{i}+1$
- Right-child:

REVIEW

- With 0 indexing:
- Parent: ($\mathrm{i}-1$)/2
- Left-child: $2 \mathrm{i}+1$
- Right-child: $2 \mathrm{i}+2$

REVIEW

- With 1 indexing:
- Parent:
- Left-child:
- Right-child:

REVIEW

- With 1 indexing:
- Parent: i/2
- Left-child:
- Right-child:

REVIEW

- With 1 indexing:
- Parent: i/2
- Left-child: 2 i
- Right-child:

REVIEW

- With 1 indexing:
- Parent: i/2
- Left-child: 2 i
- Right-child: $2 \mathbf{i + 1}$

REVIEW

- What about for a d-heap?

REVIEW

- What about for a d-heap?
- Arithmetic changes slightly, but it is still doable

HEAPS

- Operations
- Insert: adds a data, priority pair into the heap

HEAPS

- Operations
- Insert: adds a data, priority pair into the heap
- deleteMin: returns and removes the item of smallest priority from the heap

HEAPS

- Operations
- Insert: adds a data, priority pair into the heap
- deleteMin: returns and removes the item of smallest priority from the heap
- changePriority: changes the priority of a particular item in the heap

HEAPS

- Operations
- Insert: adds a data, priority pair into the heap
- deleteMin: returns and removes the item of smallest priority from the heap
- changePriority: changes the priority of a particular item in the heap

HEAPS

- Operations
- Insert: adds a data, priority pair into the heap
- deleteMin: returns and removes the item of smallest priority from the heap
- changePriority: changes the priority of a particular item in the heap
- What are the (worst-case) runtimes for these operations?

HEAPS

- Insert:
- Add the element at the bottom of the tree

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place
- Adding to the end of a tree?

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place
- Adding to the end of a tree? $O(1)$

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place
- Adding to the end of a tree? O (1)

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place
- Adding to the end of a tree? O (1)
- Percolating up?

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place
- Adding to the end of a tree? O (1)
- Percolating up? o(height)

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place
- Adding to the end of a tree? $O(1)$
- Percolating up? o(height)
- What is the height of a heap?

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place
- Adding to the end of a tree? $\mathrm{O}(1)$
- Percolating up? o(height)
- What is the height of a heap? $\log _{2} \mathbf{n}$

HEAPS

- Insert:
- Add the element at the bottom of the tree
- "Percolate up" that element to its correct place
- Adding to the end of a tree? $O(1)$
- Percolating up? O(height) $O(\log n)$
- What is the height of a heap? $\log _{2} \mathbf{n}$

HEAPS

- deleteMin:

HEAPS

- deleteMin:
- Move the last element up to the top of the tree
- Percolate that element down
- Return the original root of the tree.

HEAPS

- deleteMin:
- Move the last element up to the top of the tree
- Percolate that element down
- Return the original root of the tree.
- Copying element?

HEAPS

- deleteMin:
- Move the last element up to the top of the tree
- Percolate that element down
- Return the original root of the tree.
- Copying element? $\mathbf{O}(1)$

HEAPS

- deleteMin:
- Move the last element up to the top of the tree
- Percolate that element down
- Return the original root of the tree.
- Copying element? O(1)
- Percolating down?

HEAPS

- deleteMin:
- Move the last element up to the top of the tree
- Percolate that element down
- Return the original root of the tree.
- Copying element? O(1)
- Percolating down? O(log n)

HEAPS

- deleteMin:
- Move the last element up to the top of the tree
- Percolate that element down
- Return the original root of the tree.
- Copying element? O(1)
- Percolating down? O(log n)
- Returning element?

HEAPS

- deleteMin:
- Move the last element up to the top of the tree
- Percolate that element down
- Return the original root of the tree.
- Copying element? O(1)
- Percolating down? O(log n)
- Returning element? O(1)

HEAPS

- changePriority:

HEAPS

- changePriority:
- Find the element
- Percolate up/down

HEAPS

- changePriority:
- Find the element
- Percolate up/down
- Finding in a heap?

HEAPS

- changePriority:
- Find the element
- Percolate up/down
- Finding in a heap? $\mathbf{O}(\mathrm{n})$

HEAPS

- changePriority:
- Find the element
- Percolate up/down
- Finding in a heap? O(n) Why?

HEAPS

- changePriority:
- Find the element
- Percolate up/down
- Finding in a heap? O(n) Why?
- Heap property does not give us the divide and conquer benefit

HEAPS

- changePriority:
- Find the element
- Percolate up/down
- Finding in a heap? O(n) Why?
- Heap property does not give us the divide and conquer benefit
- Percolate up/down?

HEAPS

- changePriority:
- Find the element
- Percolate up/down
- Finding in a heap? O(n) Why?
- Heap property does not give us the divide and conquer benefit
- Percolate up/down? O(log n)

HEAPS

- changePriority:
- Find the element
- Percolate up/down
- Finding in a heap? O(n) Why?
- Heap property does not give us the divide and conquer benefit
- Percolate up/down? O(log n)
- On average, is it faster to percolate up or down?

ANALYSIS

- Let's find an interesting algorithm to analyze

ANALYSIS

- Let's find an interesting algorithm to analyze
- Given an array of length n, how do we make that array into a heap?

ANALYSIS

- Let's find an interesting algorithm to analyze
- Given an array of length n , how do we make that array into a heap?
- Naïve approach?
- Make a new heap and add each element of the array into the heap

ANALYSIS

- Let's find an interesting algorithm to analyze
- Given an array of length \mathbf{n}, how do we make that array into a heap?
- Naïve approach?
- Make a new heap and add each element of the array into the heap
- How long to finish?

FUN FACTS!

- Is it really $O(n \log n) ?$

FUN FACTS!

- Is it really $\mathbf{O}(\mathrm{n} \log \mathrm{n})$?
- Early insertions are into empty trees

FUN FACTS!

- Is it really $\mathbf{O}(\mathrm{n} \log \mathrm{n})$?
- Early insertions are into empty trees $\mathbf{O}(1)$!

FUN FACTS!

- Is it really $O(n \log n)$?
- Early insertions are into empty trees $\mathbf{O}(1)$!
- Consider a simpler example, adding to the end of a linked list.

FUN FACTS!

- Is it really $\mathbf{O}(\mathrm{n} \log \mathrm{n})$?
- Early insertions are into empty trees $\mathbf{O}(1)$!
- Consider a simpler example, creating a sorted linked list.
- Adding at the end of a linked list with k items takes $\mathrm{O}(\mathrm{k})$ operations.

FUN FACTS!

- Is it really $\mathbf{O}(\mathrm{n} \log \mathrm{n})$?
- Early insertions are into empty trees $\mathbf{O}(1)$!
- Consider a simpler example, creating a sorted linked list.
- Adding at the end of a linked list with k items takes $\mathrm{O}(\mathrm{k})$ operations.

FUN FACTS!

- Is it really $\mathbf{O}(\mathrm{n} \log \mathrm{n})$?
- Early insertions are into empty trees $\mathbf{O}(1)$!
- Consider a simpler example, creating a sorted linked list.
- Adding at the end of a linked list with k items takes $\mathrm{O}(\mathrm{k})$ operations.
$1+2+3+4+5 \ldots$

FUN FACTS!

- Is it really $\mathbf{O}(\mathrm{n} \log \mathrm{n})$?
- Early insertions are into empty trees $\mathbf{O}(1)$!
- Consider a simpler example, creating a sorted linked list.
- Adding at the end of a linked list with k items takes $\mathrm{O}(\mathrm{k})$ operations.
$1+2+3+4+5 \ldots$

FUN FACTS!

- Is it really $\mathbf{O}(\mathrm{n} \log \mathrm{n})$?
- Early insertions are into empty trees $\mathbf{O}(1)$!
- Consider a simpler example, creating a sorted linked list.
- Adding at the end of a linked list with k items takes $\mathrm{O}(\mathrm{k})$ operations.
$1+2+3+4+5 \ldots$
What is this summation?

FUN FACTS!

$$
\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)
$$

FUN FACTS!

$$
\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)
$$

- What does this mean?

FUN FACTS!

$$
\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)
$$

- What does this mean?
- Summing k from 1 to n is still $0\left(n^{2}\right)$

FUN FACTS!

$$
\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)
$$

- What does this mean?
- Summing k from 1 to n is still $0\left(n^{2}\right)$
- Similarly, summing log(k) from 1 to n is O(n $\log n$)

ANALYSIS

- Naïve approach:
- Must add n items

ANALYSIS

- Naïve approach:
- Must add n items
- Each add takes how long?

ANALYSIS

- Naïve approach:
- Must add n items
- Each add takes how long? log(n)

ANALYSIS

- Naïve approach:
- Must add n items
- Each add takes how long? log(n)
- Whole operation is $O(\log (n))$

ANALYSIS

- Naïve approach:
- Must add n items
- Each add takes how long? log(n)
- Whole operation is $O(\log (n))$
- Can we do better?

ANALYSIS

- Naïve approach:
- Must add n items
- Each add takes how long? log(n)
- Whole operation is $O(\log (n))$
- Can we do better?
- What is better?

ANALYSIS

- Naïve approach:
- Must add n items
- Each add takes how long? log(n)
- Whole operation is $O(\log (n))$
- Can we do better?
- What is better? $O(n)$

HEAPS

- Facts of binary trees

HEAPS

- Facts of binary trees
- Increasing the height by one doubles the number of possible nodes

HEAPS

- Facts of binary trees
- Increasing the height by one doubles the number of possible nodes
- Therefore, a complete binary tree has half of its nodes in the leaves

HEAPS

- Facts of binary trees
- Increasing the height by one doubles the number of possible nodes
- Therefore, a complete binary tree has half of its nodes in the leaves
- A new piece of data is much more likely to have to percolate down to the bottom than be the smallest item in the heap

BUILDHEAP

- So a naïve buildheap takes $O(n \log n)$

BUILDHEAP

- So a naïve buildheap takes $O(n \log n)$
- Why implement at all?

BUILDHEAP

- So a naïve buildheap takes $O(n \log n)$
- Why implement at all?
- If we can get it $O(n)$!

FLOYD'S METHOD

- Traverse the tree from bottom to top
- Reverse order in the array

FLOYD'S METHOD

- Traverse the tree from bottom to top
- Reverse order in the array
- Start with the last node that has children.
- How to find?

FLOYD'S METHOD

- Traverse the tree from bottom to top
- Reverse order in the array
- Start with the last node that has children.
- How to find? Size / 2

FLOYD'S METHOD

- Traverse the tree from bottom to top
- Reverse order in the array
- Start with the last node that has children.
- How to find? Size / 2
- Percolate down each node as necessary

FLOYD'S METHOD

- Traverse the tree from bottom to top
- Reverse order in the array
- Start with the last node that has children.
- How to find? Size / 2
- Percolate down each node as necessary
- Wait! Percolate down is $O(\log n)$!
- This is an $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ approach!

FLOYD'S METHOD

- It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!

FLOYD'S METHOD

- It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!
- How far does each node travel (at worst)

FLOYD'S METHOD

- It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!
- How far does each node travel (at worst)
- Leaves don't move at all: Height $=0$

FLOYD'S METHOD

- It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!
- How far does each node travel (at worst)
- Leaves don't move at all: Height $=0$
- This is half the nodes in the tree

FLOYD'S METHOD

- It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!
- How far does each node travel (at worst)
- $1 / 2$ of the nodes don't move:
- These are leaves - Height $=0$
- 1/4 can move at most one
- 1/8 can move at most two

FLOYD'S METHOD

- It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!
- How far does each node travel (at worst)
- $1 / 2$ of the nodes don't move:
- These are leaves - Height $=0$
- 1/4 can move at most one
- 1/8 can move at most two ...

FLOYD'S METHOD

$$
\sum_{i=0}^{n} \frac{i}{2^{i+1}}=2^{-n-1}\left(-n+2^{n+1}-2\right)
$$

- Thanks Wolfram Alpha!

FLOYD'S METHOD

$$
\sum_{i=0}^{n} \frac{i}{2^{i+1}}=2^{-n-1}\left(-n+2^{n+1}-2\right)
$$

- Thanks Wolfram Alpha!
- Does this look like an easier summation?

FLOYD'S METHOD

$$
\sum_{i=0}^{\infty} \frac{1}{2^{i+1}}=1
$$

FLOYD'S METHOD

$$
\sum_{i=0}^{\infty} \frac{1}{2^{i+1}}=1
$$

- This is a must know summation!

FLOYD'S METHOD

$$
\sum_{i=0}^{\infty} \frac{1}{2^{i+1}}=1
$$

- This is a must know summation!
- $1 / 2+1 / 4+1 / 8+\ldots=1$

FLOYD'S METHOD

$$
\sum_{i=0}^{\infty} \frac{1}{2^{i+1}}=1
$$

- This is a must know summation!
- $1 / 2+1 / 4+1 / 8+\ldots=1$
- How do we use this to prove our complicated summation?

FLOYD'S METHOD

$$
1 / 2+1 / 4+1 / 8 \ldots \quad \ldots+1 / 2^{n}=1
$$

FLOYD'S METHOD

$$
\begin{array}{rll}
1 / 2+1 / 4+1 / 8 \ldots & \ldots+1 / 2^{n} & =1 \\
1 / 4+1 / 8 \ldots & \ldots+1 / 2^{n} & =1 / 2 \\
1 / 8 \ldots & \ldots+1 / 2^{n} & =1 / 4
\end{array}
$$

FLOYD'S METHOD

$1 / 2+1 / 4+1 / 8$... ... $+1 / 2^{n}=1$

$$
\begin{array}{rll}
1 / 4+1 / 8 \ldots & \ldots+1 / 2^{n}=1 / 2 \\
1 / 8 \ldots & \ldots+1 / 2^{n}=1 / 4
\end{array}
$$

- Vertical columns sum to:
$i / 2^{\wedge} i$, which is what we want
- What is the right summation?
- Our original summation plus 1

FLOYD'S METHOD

$$
\sum_{i=1}^{\infty} \frac{i}{2^{i}}=2
$$

FLOYD'S METHOD

$$
\sum_{i=1}^{\infty} \frac{i}{2^{i}}=2
$$

- This means that the number of swaps we perform in Floyd's method is 2 times the size... So Floyd's method is $0(n)$

NEXT LECTURE

- Back to analysis

NEXT LECTURE

- Back to analysis
- Recurrences and analyzing recursive functions

