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JUNE 26TH – ANALYSIS OF THE HEAP 
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ASSORTED MINUTIAE 
•  Some problems with EX02 and EX03 

•  Deadline will be extended to Friday 
•  If solutions aren’t resolved by tomorrow, it 

will be converted to a pdf submission on 
canvas. 

•  P1 should be out and you should have 
begun work 
•  Checkpoint moved to Friday 



TODAY’S LECTURE 
•  bigO and analysis 



TODAY’S LECTURE 
•  bigO and analysis 
•  Analyzing the heap 



TODAY’S LECTURE 
•  bigO and analysis 
•  Analyzing the heap 
•  Floyd’s method 



REVIEW FROM LAST WEEK 
•  Heap implementation 



REVIEW FROM LAST WEEK 
•  Heap implementation 

•  Complete 



REVIEW FROM LAST WEEK 
•  Heap implementation 

•  Complete 
•  Heap property 



REVIEW FROM LAST WEEK 
•  Heap implementation 

•  Complete 
•  Heap property 
•  Array implementation (0 or 1 indexing) 



REVIEW FROM LAST WEEK 
•  Heap implementation 

•  Complete 
•  Heap property 
•  Array implementation (0 or 1 indexing) 



REVIEW FROM LAST WEEK 
•  Heap implementation 

•  Complete 
•  Heap property 
•  Array implementation (0 or 1 indexing) 
•  Percolate up and percolate down 



REVIEW FROM LAST WEEK 
•  Heap implementation 

•  Complete 
•  Heap property 
•  Array implementation (0 or 1 indexing) 
•  Percolate up and percolate down 
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REVIEW FROM LAST WEEK 
•  Algorithm analysis 

•  Counting operations strictly is unreliable 
•  Want some way for us to compare 

functions 
•  bigO – asymptotic runtime bounds 
•  f(n) = O(g(n)) if there exists some c 

and n0 such that f(n) < c*g(n) for 
some c > 0 and all n > n0!
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Omega  
Formally, a function f(n) is Ω(g(n)) if 
there exists a c and n0 > 0 such that: 
•  For all n > n0, f(n) > c*g(n)!
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BIG-O NOTATION 
•  If a function f(n) is in O(g(n)) and 
Ω(g(n)), then g(n) is a tight bound on 
f(n), we call this big theta. 

•  Formally, if f(n) is in O(g(n)) and 
Ω(g(n)), then f(n) is in θ(g(n))!

•  Note that the two will have different c 
and n0 
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BIG O NOTATION 
•  What does this help us with? 

•  The constant multiple c lets us organize 
similar algorithms together. 

•  Remember that loga k and logb k differ by 
a constant factor? 

•  That makes all logs in the same family 
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CORRECTNESS ANALYSIS 
•  How do we show an algorithm is 

correct? 
•  Need to look at the approach 
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BINARY SEARCH (AGAIN) 
public int binarySearch(int[] data, int toFind){!

int low = 0; int high = data.length-1;!

while(low <= high){!
!int mid = (low+high)/2;!

!if(toFind>mid) low = mid+1; continue;!

!else if(toFind<mid) high = mid-1; continue; !

!else return mid;!

}!
return -1;!

}!

  

!
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BINARY SEARCH CORRECTNESS 
•  Prove binary search returns the correct 

answer 
•  Need property of sortedness 
•  For all pairs i,j  in the array: 

•  If A[i] < A[j], then i < j!
•  Binary search always chooses the 

correct side 
•  End case: low = high 
 



ANALYSIS 
•  Let’s use these analytical approaches to 

solve some things about heap functions 

!



ANALYSIS 
•  Let’s use these analytical approaches to 

solve some things about heap functions 
•  First, let’s do a quick review of heap 

properties 
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REVIEW 
•  What about for a d-heap? 
•  Arithmetic changes slightly, but it is still 

doable 

!
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HEAPS 
•  Operations 

•  Insert: adds a data, priority pair into the heap 
•  deleteMin: returns and removes the item of 

smallest priority from the heap 
•  changePriority: changes the priority of a 

particular item in the heap 
•  What are the (worst-case) runtimes for these 

operations? 
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HEAPS 
•  Insert: 

•  Add the element at the bottom of the tree 
•  “Percolate up” that element to its correct place 

•  Adding to the end of a tree?  O(1)!
•  Percolating up? O(height) O(log n)!

•  What is the height of a heap? log2 n!
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HEAPS 
•  deleteMin: 

•  Move the last element up to the top of the tree 
•  Percolate that element down 
•  Return the original root of the tree. 

•  Copying element? O(1) 
•  Percolating down? O(log n) 
•  Returning element? O(1) 
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HEAPS 
•  changePriority: 

•  Find the element 
•  Percolate up/down 

•  Finding in a heap? O(n) Why? 
•  Heap property does not give us the divide and 

conquer benefit 
•  Percolate up/down? O(log n) 
•  On average, is it faster to percolate up or down? 
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ANALYSIS 
•  Let’s find an interesting algorithm to 

analyze  
•  Given an array of length n, how do we 

make that array into a heap? 
•  Naïve approach? 

•  Make a new heap and add each element 
of the array into the heap 

•  How long to finish? 

!
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•  Is it really O(n log n)? 
•  Early insertions are into empty trees O(1)! 
•  Consider a simpler example, creating a 

sorted linked list. 
•  Adding at the end of a linked list with k 

items takes O(k) operations. 
1+2+3+4+5… 
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FUN FACTS! 

•  What does this mean? 
•  Summing k from 1 to n is still O(n2)!
•  Similarly, summing log(k) from 1 to n is 
O(n log n)  !
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•  Must add n items 
•  Each add takes how long? log(n)!
•  Whole operation is O(log(n))!
•  Can we do better? 

•  What is better? O(n) 

!



HEAPS 
•  Facts of binary trees 



HEAPS 
•  Facts of binary trees 

•  Increasing the height by one doubles the number 
of possible nodes 



HEAPS 
•  Facts of binary trees 

•  Increasing the height by one doubles the number 
of possible nodes 

•  Therefore, a complete binary tree has half of its 
nodes in the leaves 



HEAPS 
•  Facts of binary trees 

•  Increasing the height by one doubles the number 
of possible nodes 

•  Therefore, a complete binary tree has half of its 
nodes in the leaves 

•  A new piece of data is much more likely to have 
to percolate down to the bottom than be the 
smallest item in the heap 
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BUILDHEAP 
•  So a naïve buildheap takes O(n log n) 

•  Why implement at all? 
•  If we can get it O(n)! 
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FLOYD’S METHOD 
•  Traverse the tree from bottom to top 

•  Reverse order in the array 
•  Start with the last node that has children. 

•  How to find? Size / 2!
•  Percolate down each node as necessary 

•  Wait! Percolate down is O(log n)! 
•  This is an O(n log n) approach! 
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•  How far does each node travel (at worst) 
•  1/2 of the nodes don’t move: 

•  These are leaves – Height = 0 

•  1/4 can move at most one  
•  1/8 can move at most two … 
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•  Thanks Wolfram Alpha! 
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FLOYD’S METHOD 

•  This is a must know summation! 
•  1/2 + 1/4 + 1/8 + … = 1 
•  How do we use this to prove our 

complicated summation?!
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1/2 + 1/4 + 1/8 … !… + 1/2n = 1!
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FLOYD’S METHOD 
1/2 + 1/4 + 1/8 … !… + 1/2n = 1!

      1/4 + 1/8 … !… + 1/2n = 1/2!

            1/8 … !… + 1/2n = 1/4!

•  Vertical columns sum to: 
 i/2^i, which is what we want 

 
•  What is the right summation? 

•  Our original summation plus 1 
!

!



FLOYD’S METHOD 



FLOYD’S METHOD 

•  This means that the number of swaps we 
perform in Floyd’s method is 2 times the 
size… So Floyd’s method is O(n)!



NEXT LECTURE 

•  Back to analysis 



NEXT LECTURE 

•  Back to analysis 
•  Recurrences and analyzing recursive 

functions 


