
CSE 332: Practice Problems

1 Short Answer

a) See bigO handout on Piazza

b) Suppose a heap is full and has n elements. What is the bigO asymptotic runtime of

an insert? Explain your answer

If the heap is full, then there must be a resize. Because it takes n time

to copy the array, the resize operation is in O(n)

c) Write pseudocode, or explain briefly in paragraph form, an algorithm that will find the

largest element in a BST. Include the worst-case runtime of this algorithm.

To find the largest element in a binary search tree, we instantialize a cursor

at the root. We move the cursor down the right branch of each subtree until

we reach a node that has no right child. The worst case for this situation

is the degenerate tree that has no left children. It is then a linked list

with height equal to n, so this is an O(n) operation.

d) What is the best-case and worst-case bigO complexities for find(key k) in a half-full

hash table implemented using linear probing. Briefly explain these best and worst case

scenarios.

Best case is when every other element in the array is occupied, and then

the linear probe will have to try at most 2 locations, giving us a O(1) runtime.

The worst case is when half of the table is a contiguous cluster. Then,

attempting to insert at the beginning of this cluster results in n/2 probes,

which is O(n) runtime.

e) Provide and explain the two types of locality relevant to caching and memory accesses.

1



Spacial locality: objects near each other in memory are likely to be accessed

at the same time. This is accounted for by the memory page. If a piece

of memory is accessed, the whole page is brought into cache, making nearby

accesses faster.

Temporal locality: objects recently accessed are likely to be accessed again.

This is accounted for by the cache. If we access a piece of memory, we bring

it closer to the processor (in faster cache) so that we can access the memory

faster.

f) When does the worst-case for B-tree insert occur?

The worst case for the B-tree insert is when the insertion forces the leaf

to split, which then forces all of the signposts to split back up to the

root. This situation can occur when the B-tree is close to the maximum number

of nodes for its height.

g) Given an object consisting of three integers, decide whether summing the three to-

gether makes a good hash function. Explain your answer.

If the data is bounded (that is, it has a maximum and a minimum value), summing

three numbers together does not evenly distribute the data. The summation

will more likely result in a value that is nearer to the middle of the min

and max than it does values at the edges

h) Explain the difference between an ADT and a data structure. Use examples.

An ADT describes functions and expected behaviors. For example this may

be a priority queue, we support insert() and deleteMin() and the behavior

that we expect is that deleteMin() will return the value with smallest priority.

A data structure is an approach for actually structuring the data in memory

in a way that can provide the desired behavior. In our priority queue example,

the heap is a data structure that we can use. Data structures can be analyzed

for their runtime and memory usage because they actually describe an approach

to the problem. ADTs cannot be analyzed because they only describe the behavior

2



itself. Many data structures exist to implement an ADT.

i) Explain the worst case for sorted array insert? Is this different than the amortized

insert?

Worst case for sorted array insert is when we need to add to the front of

the array and all n elements need to be shifted. Because this can occur

at every call of insert, it does not change given an amortized analysis.

j) Given the FixedSizeFIFOWorklist from P1, which parts of this interface specify an

ADT, and which specify a data structure

Adding peek(i) to the WorkList interface is describing a new expected behavior

of our object. However, if we insist that this means it is stored in an

array, then it is a data structure decision. Behavior is the condition for

an ADT and data structures deal with how the data is actually stored.

k) A client wishes to build and maintain a library of customer information. Discuss be-

tween B-tree, Trie, Hash table and AVL tree about what might be best. On what other

variables does this choice depend?

If the "customer information" has values that cannot be represented in serial

characters, then it cannot be represented as a trie. Choosing a B-tree would

depend on the size of the data. If the data set is large enough that disk

accesses are likely, then a B-tree might be indicated. If disk accesses

are unlikely, our choice is between HashTable and AVL. Tradeoffs here are

then between memory efficiency and runtime. Hash tables tend to use more

memory (and they need to perform costly resizes) whereas AVL trees have slightly

slower finds

l) For B-trees, what are M and L and what factors impact how we select them?

M is the maximum number of subtrees for a signpost node and L is the maximum

number of key, value pairs in a leaf node. We select M and L such that signposts

3



and leaves are as close to one memory page in size without going over. This

depends on the size of a page, the size of our keys and values and the size

of a pointer.

4



2 Big O notation

For the following functions, determine the tightest bigO upper bound in terms of n. Write

your answers on the line provided.

a) int f1(int n){

for(int i = n; i>0; i--){

for(int j = 0; j<i; j++){

System.out.println("!");

}

}

}

O(n^2)

b) void f2(int n) {

for(int i=0; i < n; i++) {

for(int k=0; k < n; k++) {

for(int m=0; m < 10; m++) {

System.out.println("!");

} } } }

}

O(n^2)

c) int f3(int n){

if (n < 10) return n;

else if(n < 1000) return f3(n-2);

else return f3(n/4)*f3(n/4);

}

O(n)

5



3 Design Decision

A client is trying to provide a data structure which logs the locations of process jobs on a

small server farm. There are 64 servers at the farm and there is no limit to the number of

jobs that should be assigned to each server. For each process job, there are four pieces of

information which need to be tracked:

• An int ID number which is unique to each job

• An int which indicates to which server the job has been assigned

• A long which is the time that the process was assigned to the server

• A String which identifies the owner of the job

Because this is a log, the client will only delete records when they were created in error.

Because of this, fast delete times are not important. Additionally, the client will be calling

find much more frequently than insert, so any speed benefits should prioritize speeding up

find, if possible.

Provide a data structure and implementation that would meet the clients demands. Ex-

plain what data will be stored where and how it will be accessed. Then, justify any decisions

you made using material from the course. This includes, but is not limited to: asymptotic

runtimes, memory usage, experimental results and data structure properties.

This problem is solved with the Dictionary ADT where the unique job ID is the key

and a combination of the other three pieces of data is our value. Once we have

identified this, we have a choice for our data structure.

B-tree: If disk accesses are common (as usual). But, it’s difficult to implement and

doesn’t provide much benefit if there isn’t much data. We would get log(n) runtimes

for all of our functions which is good and good memory utilization because so much

of our data is stored in arrays.

AVL: Good overall data structure choice if all jobs can fit in memory. Log(n)

finds and inserts. Rare deletions also make AVL desirable. If the data set is

large enough that it cannot be stored easily in cache then it might be

preferable over a hashtable. Additionally, a hashtable may take more

memory than an AVL tree if it is well-maintained.

6



Hashtable:

A hashtable would be best if the total amount of data is small. We can

get quick access times if all of the data is in memory or in the cache,

provided the hashtable is well maintained. Memory constraints may

make this difficult. Under those constraints, a chaining hashtable is a

strong choice, but it could be undesireable if we are frequently resizing.

Other:

A linked list has no advantages over an AVL tree, so it there is no reason to

store the data this way. An array might be desirable if the size of the

data is very small, but if this is the case, any data structure will be suffficient.

7


