CSE 332: Data Structures and Parallelism

QuickCheck: Dijkstra's Algorithm Solutions

0. Velociraptors

Consider the following graph:

Suppose that you are at a and you are planning your escape from a bunch of hungry velociraptors (edge weights represent the expected number of velociraptors you will meet on this path, normalized). Run Dijkstra's Algorithm to find the lengths of the shortest paths (fewest number of velociraptors met) from a to each of the other vertices. You should show the state of your worklist at each step.

Solution

Vertex	Init	a	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}
a	0	\checkmark					
b	∞	-1	\checkmark				
c	∞	13	2	\checkmark			
d	∞	50		-3	\checkmark		
e	∞	16			7	\checkmark	
f	∞	8			3		\checkmark

Order added to known set: a, b, c, d, f, e

