CSE 332 17au Section 7 Worksheet

1. Parallel Prefix Sum: Given input array $[8,9,6,3,2,5,7,4]$, output an array such that each output[i]=sum(array[0],array[1],...array[i]), using the Parallel Prefix Sum algorithm from lecture. Show the intermediate steps. Draw the input \& output arrays, and for each step, show the tree of recursive task objects that would be created (where a node's child is for two problems of half the size) and the fields each node needs. Do not use a sequential cut-off.
2. Parallel Prefix FindMin: Given input array $[8,9,6,3,2,5,7,4]$, output an array such that each output[i]=min(array[0],array[1],...array[i]). Show all steps, as above.
3. Show that Quicksort with sequential partitioning, but parallel recursive sorting, is indeed $\mathrm{O}(\mathrm{n})$, by solving the recurrence relation shown in lecture: $T(n)=n+T(n / 2)$
4. Show that a completely parallel Quicksort, with parallel partition and recursion, is $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$, by solving the recurrence relation shown in lecture: $T(n)=O(\log n)+T(n / 2)$
