CSE 332: Data Structures & Parallelism
Lecture 23: Disjoint Sets

Ruth Anderson
Autumn 2017
Aside: Union-Find aka Disjoint Set ADT

• **Union(x,y)** – take the union of two sets named x and y
 – Given sets: \{3,5,7\} , \{4,2,8\}, \{9\}, \{1,6\}
 – **Union(5,1)**
 Result: \{3,5,7,1,6\}, \{4,2,8\}, \{9\},

To perform the union operation, we replace sets x and y by \(x \cup y\)

• **Find(x)** – return the name of the set containing x.
 – Given sets: \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
 – **Find(1)** returns 5
 – **Find(4)** returns 8

• We can do Union in constant time.
• We can get Find to be *amortized* constant time
 (worst case \(O(\log n)\) for an individual Find operation).
Implementing the DS ADT

- n elements,
 Total Cost of: m finds, $\leq n-1$ unions

- Target complexity: $O(m+n)$
 i.e. $O(1)$ amortized

- $O(1)$ worst-case for find as well as union would be great, but…

 Known result: both find and union cannot be done in worst-case $O(1)$ time
Data Structure for the DS ADT

• **Observation:** trees let us find many elements given one root…

• **Idea:** if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements…

• **Idea:** Use one tree for each equivalence class. The name of the class is the tree root.
Up-Tree for Disjoint Union/Find

Initial state: 1 2 3 4 5 6 7

After several Unions:

Roots are the names of each set.
Find Operation

Find(x) - follow x to the root and return the root

Find(6) = 7
Union Operation

Union(x,y) - assuming x and y are roots, point y to x.
Simple Implementation

• Array of indices

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Up[x] = 0 means x is a root.
Implementation

```c
int Find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```c
void Union(int x, int y) {
    up[y] = x;
}
```

runtime for Union():

runtime for Find():

runtime for m Finds and $n-1$ Unions:
A Bad Case

Union(x,y) – “point y to x”

Find(1) n steps!!

Union(2,1)

Union(3,2)

Union(n,n-1)
Now this doesn’t look good 😞
Can we do better? Yes!

1. Improve **union** so that **find** only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. Improve **find** so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $\Theta(m + n)$
Weighted Union/Union by Size

- Weighted Union
 - Always point the *smaller* (total # of nodes) tree to the root of the larger tree

![Diagram of Weighted Union](image-url)
Example Again

\[\text{Find}(1) \text{ constant time} \]
Analysis of Weighted Union

With weighted union an up-tree of height h has weight *at least* 2^h.

- **Proof by induction**
 - **Basis:** $h = 0$. The up-tree has one node, $2^0 = 1$
 - **Inductive step:** Assume true for all $h' < h$.

Minimum weight up-tree of height h formed by weighted unions

$$W(T_1) \geq W(T_2) \geq 2^{h-1}$$

Weighted union

Induction hypothesis

$$W(T) \geq 2^{h-1} + 2^{h-1} = 2^h$$
Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

\[n \geq 2^h \]
\[\log_2 n \geq h \]

- Find(x) in tree T takes \(O(\log n) \) time.
 - Can we do better?
Worst Case for Weighted Union

\[\frac{n}{2} \text{ Weighted Unions} \]

\[\frac{n}{4} \text{ Weighted Unions} \]
Example of Worst Cast (cont’)

After \(\frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Weighted Unions:

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).
Array Implementation

2 1 3 4 5 6 7

up weight

-1 1 -1 7 7 5 -1

2 1 4
Weighted Union

\[W\text{-Union}(i,j : \text{index}) \{ \]

//i and j are roots

\[wi := \text{weight}[i]; \]
\[wj := \text{weight}[j]; \]
\[\text{if } wi < wj \text{ then} \]
\[\quad \text{up}[i] := j; \]
\[\quad \text{weight}[j] := wi + wj; \]
\[\text{else} \]
\[\quad \text{up}[j] := i; \]
\[\quad \text{weight}[i] := wi + wj; \]
\[\} \]

new runtime for Union():

new runtime for Find():

runtime for \(m \) finds and \(n-1 \) unions =
Nifty Storage Trick

• Use the same array representation as before

• Instead of storing \(-1\) for the root, simply store \(-\text{size}\)

[Read section 8.4]
How about Union-by-height?

• Can still guarantee $O(\log n)$ worst case depth

Left as an exercise!

• Problem: Union-by-height doesn’t combine very well with the new find optimization technique we’ll see next
Now this doesn’t look good 😞
Can we do better? Yes!

1. DONE: Improve \texttt{union} so that \texttt{find} only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. NOW: Improve \texttt{find} so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $\Theta(m + n)$
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

PC-Find(3)
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Draw the result of Find(e):
Self-Adjustment Works

PC-Find(x)
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ -1 do //find root//
 r := up[r];
 if i ≠ r then //compress path//
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}
Path Compression: Code

```java
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable[x];
    int i = xID;

    // Get the root for
    // this set
    while(up[xID] != -1) {
        xID = up[xID];
    }

    return xID;
}

// Change the parent for
// all nodes along the path
while(up[i] != -1) {
    temp = up[i];
    up[i] = xID;
    i = temp;
}
return xID;
```

(New?) runtime for Find:
Interlude: A Really Slow Function

Ackermann’s function is a really big function $A(x, y)$ with inverse $\alpha(x, y)$ which is really small.

How fast does $\alpha(x, y)$ grow?

\[\alpha(x, y) = 4 \text{ for } x \text{ far larger than the number of atoms in the universe } (2^{300}) \]

α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences
A More Comprehensible Slow Function

\[\log^* x = \text{number of times you need to compute } \log \text{ to bring value down to at most 1} \]

E.g. \[\log^* 2 = 1 \]
\[\log^* 4 = \log^* 2^2 = 2 \]
\[\log^* 16 = \log^* 2^{2^2} = 3 \] (log log log 16 = 1)
\[\log^* 65536 = \log^* 2^{2^{2^2}} = 4 \] (log log log log 65536 = 1)
\[\log^* 2^{65536} = \ldots \ldots = 5 \]

Take this: \[\alpha(m,n) \text{ grows even slower than } \log^* n \] !!
Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find operations on a set of n elements have worst case complexity of $O(p \cdot \alpha(p, n))$

For *all practical purposes* this is amortized constant time:

$O(p \cdot 4)$ for p operations!

- Very complex analysis
Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.

• Time complexity for $m \geq n$ operations on n elements is $O(m \log^* n)$ where $\log^* n$ is a very slow growing function.
 – $\log^* n < 7$ for all reasonable n. Essentially constant time per operation!

• Using “ranked union” gives an even better bound theoretically.
Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.
Find MST using Kruskal’s

Now find the MST using Prim’s method.
• Under what conditions will these methods give the same result?
Draw the UpTree

<table>
<thead>
<tr>
<th>Nodes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Draw the UpTree

Nodes	A	B	C	D	E	F	G	H
Parent | | | | | | | | |
Size | | | | | | | | |