CSE 332: Data Structures & Parallelism

Lecture 23: Disjoint Sets

Ruth Anderson
Autumn 2017
Aside: Union-Find aka Disjoint Set ADT

- **Union(x,y)** – take the union of two sets named x and y
 - Given sets: \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
 - **Union(5,1)**
 - Result: \{3,5,7,1,6\}, \{4,2,8\}, \{9\}.
 - To perform the union operation, we replace sets x and y by \((x \cup y)\).

- **Find(x)** – return the name of the set containing x.
 - Given sets: \{3,5,7,1,6\}, \{4,2,8\}, \{9\}.
 - **Find(1)** returns 5
 - **Find(4)** returns 8

- We can do Union in constant time.
- We can get Find to be *amortized* constant time
 (worst case \(O(\log n)\) for an individual Find operation).
Implementing the DS ADT

- n elements, Total Cost of: m finds, $\leq n-1$ unions

- Target complexity: $O(m+n)$, i.e. $O(1)$ amortized

- $O(1)$ worst-case for find as well as union would be great, but…

 Known result: both find and union cannot be done in worst-case $O(1)$ time
Data Structure for the DS ADT

- **Observation**: trees let us find many elements given one root...

- **Idea**: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...

- **Idea**: Use one tree for each equivalence class. The name of the class is the tree root.
Up-Tree for Disjoint Union/Find

Initial state: 1 2 3 4 5 6 7

After several Unions:

Roots are the names of each set.

Find (6)

12/04/2017
Find Operation

\(\text{Find}(x)\) - follow \(x\) to the root and return the root

\[
\begin{array}{c}
\text{Find}(6) = 7
\end{array}
\]
Union Operation

Union(x, y) - assuming x and y are roots, point y to x.
Simple Implementation

- Array of indices

1. Union(1, 7)
2. Union(1, 3)
3. Find(6) → 1
4. Up[x] = 0 means x is a root.
Implementation

```c
int Find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```c
void Union(int x, int y) {
    up[y] = x;
}
```

runtime for `Union()`: $O(1)$

runtime for `Find()`: $O(n)$

runtime for m `Find`s and $n-1$ `Union`s:

$O(m \cdot n + n-1) = O(m \cdot n)$
A Bad Case

Union(x, y) — “point y to x”

Union(2, 1)
Union(3, 2)

Find(1) n steps!!
Now this doesn’t look good 😊

Can we do better? Yes!

1. Improve union so that \textit{find} only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. Improve \textit{find} so that it becomes even better!
 - Path compression
 - Reduces complexity to \underline{almost} $\Theta(m + n)$
Weighted Union/Union by Size

- Weighted Union
 - Always point the *smaller* (total # of nodes) tree to the root of the larger tree
Example Again

\[\begin{align*}
&1 \quad 2 \quad 3 \quad \ldots \quad n \\
&\quad \quad 2 \quad 3 \quad \ldots \quad n \\
&\quad \quad \quad 1 \quad 3 \\
&\quad \quad \quad \quad 2 \\
&\quad \quad \quad \quad \quad 1 \quad 3 \quad \ldots \quad n \\
\end{align*} \]

\begin{align*}
&\text{W-Union}(2,1) \\
&\text{W-Union}(3,2) \\
&\quad \quad \vdots \\
&\quad \quad \cdots \\
&\text{W-Union}(n,2) \\
&\text{Find}(1) \text{ constant time}
\end{align*}
Analysis of Weighted Union

With weighted union an up-tree of height h has weight at least 2^h.

- **Proof by induction**
 - **Basis**: $h = 0$. The up-tree has one node, $2^0 = 1$
 - **Inductive step**: Assume true for all $h' < h$.

![Diagram of minimum weight up-tree formed by weighted unions](image)

- $W(T_1) \geq W(T_2) \geq 2^{h-1}$
- $W(T) \geq 2^{h-1} + 2^{h-1} = 2^h$
Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

\begin{align*}
 n &\geq 2^h \\
 \log_2 n &\geq h
\end{align*}

- Find(x) in tree T takes $O(\log n)$ time.
 - Can we do better?
Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions
Example of Worst Cast (cont’)

After $n/2 + n/4 + \ldots + 1$ Weighted Unions:

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

$\log_2 n$
Array Implementation

```
  1 -> 2
  ^    |
  |    1
  |    |
  |    v
  3    4

    7
   /  \
  5    4
   /    |
  6    5

<table>
<thead>
<tr>
<th>1  2  3  4  5  6  7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up: -1  1  -1  7  7  5  -1</td>
</tr>
<tr>
<td>weight: 2  1  4</td>
</tr>
</tbody>
</table>
```
Weighted Union

\[\text{W-Union}(i, j : \text{index}) \{
\text{ } // i \text{ and } j \text{ are roots}
\text{ } wi := \text{weight}[i];
\text{ } wj := \text{weight}[j];
\text{ } \text{if } wi < wj \text{ then}
\text{ } \text{ } \text{up}[i] := j;
\text{ } \text{ } \text{weight}[j] := wi + wj;
\text{ } \text{else}
\text{ } \text{ } \text{up}[j] := i;
\text{ } \text{ } \text{weight}[i] := wi + wj;
\text{ } \}\]

New runtime for \text{Union}(): \[O(1)\]

New runtime for \text{Find}(): \[O(\log n)\]

Runtime for \(m\) finds and \(n-1\) unions:
\[O(m \cdot \log n + n)\]
Nifty Storage Trick

- Use the same array representation as before
- Instead of storing -1 for the root, simply store $-size$

[Read section 8.4]
How about Union-by-height?

- Can still guarantee $O(\log n)$ worst case depth

Left as an exercise!

- Problem: Union-by-height doesn’t combine very well with the new find optimization technique we’ll see next
Now this doesn’t look good 😞

Can we do better? Yes!

1. DONE: Improve union so that find only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. NOW: Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $\Theta(m + n)$
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Draw the result of \textit{Find}(e):
Self-Adjustment Works
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ -1 do //find root//
 r := up[r];
 if i ≠ r then //compress path//
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}
Path Compression: Code

```c
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable[x];
    int i = xID;

    // Get the root for
    // this set
    while(up[xID] != -1) {
        xID = up[xID];
    }

    return xID;
}
```

// Change the parent for
// all nodes along the path
while(up[i] != -1) {
 temp = up[i];
 up[i] = xID;
 i = temp;
}

return xID;

(New?) runtime for Find:
Interlude: A Really Slow Function

Ackermann’s function is a really big function $A(x, y)$ with inverse $\alpha(x, y)$ which is really small.

How fast does $\alpha(x, y)$ grow?

$\alpha(x, y) = 4$ for x far larger than the number of atoms in the universe (2^{300}).

α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences
A More Comprehensible Slow Function

\[\log^* x = \text{number of times you need to compute log to bring value down to at most 1} \]

E.g. \(\log^* 2 = 1 \)

\[\log^* 4 = \log^* 2^2 = 2 \]

\[\log^* 16 = \log^* 2^{2^2} = 3 \quad \text{(log log log 16 = 1)} \]

\[\log^* 65536 = \log^* 2^{2^{2^2}} = 4 \quad \text{(log log log log 65536 = 1)} \]

\[\log^* 2^{65536} = \ldots \ldots \ldots = 5 \]

Take this: \(\alpha(m,n) \text{ grows even slower than } \log^* n \) !!
Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find operations on a set of n elements have worst case complexity of $O(p \cdot \alpha(p, n))$

For all practical purposes this is amortized constant time:

$O(p \cdot 4)$ for p operations!

- Very complex analysis
Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
• Time complexity for $m \geq n$ operations on n elements is $O(m \log^* n)$ where $\log^* n$ is a very slow growing function.
 – $\log^* n < 7$ for all reasonable n. Essentially constant time per operation!
• Using “ranked union” gives an even better bound theoretically.
Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.
Student Activity

Find MST using Kruskal’s

Now find the MST using Prim’s method.
Under what conditions will these methods give the same result?
Student Activity

Draw the UpTree

<table>
<thead>
<tr>
<th>Nodes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12/04/2017
Draw the UpTree