CSE 332: Data Structures & Parallelism
Lecture 20: Topological Sort / Graph Traversals

Ruth Anderson
Autumn 2017
Today

• Graphs
 – Representations
 – Topological Sort
 – Graph Traversals
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

```
CSE 142 → CSE 143 → CSE 311 → CSE 341 → CSE 351 → CSE 331 → CSE 332 → CSE 312 → CSE 341 → CSE 351 → CSE 333 → CSE 440 → ...
```

Example output:

```
142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352
```
Valid Topological Sorts:
Questions and comments

• Why do we perform topological sorts only on DAGs?

• Is there always a unique answer?

• What DAGs have exactly 1 answer?

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Topological Sort Uses

- Figuring out how to finish your degree
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w
Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

11/27/2017
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1
 0

Output: 126 142

11/27/2017
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 0 0 0 0 0 0 0

Output: 126
 142
 143
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126 142 143 311
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 0 0 0
 0

Output: 126
 142
 143
 311
 331
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0
 0 0

Output: 126
 142
 143
 311
 331
 332
Example

Output: 126 142 143 311 331 332 312

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0 0 0 0

0 0
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0 0
 0 0 0 0

Output: 126
 142
 143
 311
 331
 332
 312
 341
 351
 352
 440
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0 0
 0 0 0 0

Output: 126 142 143 311 331 332 333 341 351 352 440
A couple of things to note

• Needed a vertex with in-degree of 0 to start
 – No cycles
• Ties between vertices with in-degrees of 0 can be broken arbitrarily
 – Potentially many different correct orders
Topological Sort: Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```
Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that $(v,w) \in E$), decrement the in-degree of w, if new degree is 0, enqueue it
Topological Sort(optimized): Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
  v = dequeue();
  put v next in output
  for each w adjacent to v {
    w.indegree--;
    if(w.indegree==0)
      enqueue(w);
  }
}
```
Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v \), find all nodes \(\textit{reachable} \) (i.e., there exists a path) from \(v \)

- Possibly “do something” for each node (an iterator!)
 - E.g. Print to output, set some field, etc.

Related Questions:

- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node

Basic idea:

- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
traverseGraph(Node start) {
 Set pending = emptySet();
 pending.add(start)
 mark start as visited
 while(pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
}
Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
 - Use an adjacency list representation

- The order we traverse depends entirely on how add and remove work/are implemented
 - Depth-first graph search (DFS): a stack
 - Breadth-first graph search (BFS): a queue

- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first
Recursive DFS, Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and “process” (e.g. print) start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a “pre-order traversal” for trees
- The marking is not needed here, but we need it to support arbitrary graphs, we need a way to process each node exactly once
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and "process"
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed:
• A different but perfectly fine traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed:
• A “level-order” traversal
DFS/BFS Comparison

Breadth-first search:
• Always finds shortest paths, i.e., “optimal solutions
 – Better for “what is the shortest path from x to y”
• Queue may hold $O(|V|)$ nodes (e.g. at the bottom level of binary tree of height h, 2^h nodes in queue)

Depth-first search:
• Can use less space in finding a path
 – If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $d*p$ elements

A third approach: Iterative deepening (IDDFS):
 – Try DFS but don’t allow recursion more than k levels deep.
 – If that fails, increment k and start the entire search over
• Like BFS, finds shortest paths. Like DFS, less space.
Saving the path

- Our graph traversals can answer the “reachability question”:
 - “Is there a path from node x to node y?”

- Q: But what if we want to output the actual path?
 - Like getting driving directions rather than just knowing it’s possible to get there!

- A: Like this:
 - Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Example using BFS

What is a path from Seattle to Austin
 – Remember marked nodes are not re-enqueued
 – Note shortest paths may not be unique