CSE 332: Data Structures & Parallelism

Lecture 20: Topological Sort / Graph Traversals

Ruth Anderson
Autumn 2017
Today

- Graphs
 - Representations
 - Topological Sort
 - Graph Traversals
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352
Valid Topological Sorts:

1, 2, 0, 3, 4
1, 0, 2, 3, 4
1, 0, 3, 2, 4
0, 1, 2, 3, 4
0, 1, 3, 2, 4
Questions and comments

- Why do we perform topological sorts only on DAGs?

- Is there always a unique answer?

- What DAGs have exactly 1 answer?

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it.
Questions and comments

• Why do we perform topological sorts only on DAGs?
 – Because a cycle means there is no correct answer

• Is there always a unique answer?
 – No, there can be 1 or more answers; depends on the graph

• What DAGs have exactly 1 answer?
 – Lists

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Topological Sort Uses

- Figuring out how to finish your degree
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v, w) in E),
 decrement the in-degree of w

<table>
<thead>
<tr>
<th>In-degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Output: $0, 1, 2, 3, 4$
Example

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

11/27/2017
Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
0 1

11/27/2017
Example

Output: 126

142

143

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 0 0 0 0

0

11/27/2017

12
Example

Output: 126
142
143
311

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
0 1 0 0 0 0 0
0

11/27/2017
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x
In-degree: 0 0 2 1 2 1 1 1 1 1 1 1
 1 0 1 0 0 0 0 0 0

Output: 126
 142
 143
 311
 331
11/27/2017
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x
In-degree: 0 0 2 1 2 1 1 1 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0 0

Output: 126
 142
 143
 311
 331
 332

11/27/2017
Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

11/27/2017
Example

Output: 126
142
143
311
331
332
312
341

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 1 0 0 0 0
0 0

11/27/2017
Example

Output: 126
142
143
311
331
332
312
341
351

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 1 0 0 0 0 0 0
0 0 0
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126
142
143
311
331
332
312
341
351
333
352
440

11/27/2017
A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders
Assume Adjacency List Representation

Topological Sort: Running time?

```plaintext
labelEachVertexWithItsInDegree(); ← \( O(V + E) \)
for (ctr=0; ctr < numVertices; ctr++) {
  v = findNewVertexOfDegreeZero(); ← \( O(V) \)
  put v next in output \( o(1) \)
  for each w adjacent to v ← d times
    w.indegree--; \( o(1) \)
}
```

\(O(V + E + \sqrt{V}(\sqrt{V} + 1 + d \cdot 1)) \)
\(O(V + E + V^2 + V + V \cdot d \cdot 1) \)
\(O(V^2 + E) \)

edges that start at this vertex

11/27/2017
Topological Sort: Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization $O(|V| + |E|)$ (assuming adjacency list)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2 + |E|)$ – not good for a sparse graph!
Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, **enqueue 0-degree nodes**
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v, w) in E), decrement the in-degree of w, if new degree is 0, enqueue it

11/27/2017
Topological Sort (optimized): Running time?

```
labelAllAndEnqueueZeros(); ~ O(v + E)
    for (ctr=0; ctr < numVertices; ctr++) {
        v = dequeue(); ~ O(1)
        put v next in output ~ O(1)
        for each w adjacent to v {
            w.indegree--; ~ O(1)
            if (w.indegree==0)
                enqueue(w); ~ O(1)
        }
    }
```

\[O(v + E + V \cdot (1 + 1 + d \cdot 3)) \]
\[O(v + E + v + v + v \cdot d \cdot 3) \]
\[O(v + E) \]

11/27/2017
Topological Sort(optimized): Running time?

```
labelAllAndEnqueueZeros();
    for(ctr=0; ctr < numVertices; ctr++){
        v = dequeue();
        put v next in output
        for each w adjacent to v {
            w.indegree--;
            if(w.indegree==0)
                enqueue(w);
        }
    }
```

- What is the worst-case running time?
 - Initialization: $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ – much better for sparse graph!
Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e., there exists a path) from v

 - Possibly “do something” for each node (an iterator!)

 • E.g. Print to output, set some field, etc.

Related Questions:

• Is an undirected graph connected?
• Is a directed graph weakly / strongly connected?

 - For strongly, need a cycle back to starting node

Basic idea:

 - Keep following nodes

 - But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Graph Traversal: Abstract Idea

traverseGraph(Node start) {
 Set pending = emptySet();
 pending.add(start)
 mark start as visited
 while (pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if (u is not marked) {
 mark u
 pending.add(u)
 }
 }
}
Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
 - Use an adjacency list representation

- The order we traverse depends entirely on how add and remove work/are implemented
 - Depth-first graph search (DFS): a stack
 - Breadth-first graph search (BFS): a queue

- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first
Recursive DFS, Example: trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

```python
DFS(Node start) {
    mark and “process” (e.g. print) start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

Order processed: A, B, D, E, C, F, G, H

• Exactly what we called a “pre-order traversal” for trees
• The marking is not needed here, but we need it to support arbitrary
 graphs, we need a way to process each node exactly once
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and "process"
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed: **ACFHBED**

- A different but perfectly fine traversal
DFS with a stack, Example: trees

```
DFS2(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and "process"
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

Order processed: A, C, F, H, G, B, E, D

- A different but perfectly fine traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed: ABCDEFG+H
- A “level-order” traversal

11/27/2017
BFS with a queue, Example: trees

```
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

Order processed: A, B, C, D, E, F, G, H
- A “level-order” traversal
DFS/BFS Comparison

Breadth-first search:
- Always finds shortest paths, i.e., “optimal solutions"
 - Better for “what is the shortest path from x to y”
- Queue may hold $O(|V|)$ nodes (e.g. at the bottom level of binary tree of height h, 2^h nodes in queue)

Depth-first search:
- Can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $d \times p$ elements

A third approach: *Iterative deepening (IDDFS)*:
- Try DFS but don’t allow recursion more than κ levels deep.
- If that fails, increment κ and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

11/27/2017
Saving the path

- Our graph traversals can answer the “reachability question”: “Is there a path from node x to node y?”

- Q: But what if we want to output the actual path?
 - Like getting driving directions rather than just knowing it’s possible to get there!

- A: Like this:
 - Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Austin
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Example using BFS

What is a path from Seattle to Austin
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique