CSE 332: Data Structures & Parallelism

Lecture 19: Introduction to Graphs

Ruth Anderson
Autumn 2017
Today

- Graphs
 - Intro & Definitions
Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair
 \[G = (V, E) \]
 - A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 - A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 - Each edge \(e_i \) is a pair of vertices
 \((v_j, v_k) \)
 - An edge “connects” the vertices

- Graphs can be directed or undirected
An ADT?

• Can think of graphs as an ADT with operations like \texttt{isEdge}((v_j, v_k))

• But it is unclear what the “standard operations” are

• Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms

• Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm

• To make the formulation easy and standard, we have a lot of standard terminology about graphs
Some graphs

For each, what are the vertices and what are the edges?

• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• …

Wow: Using the same algorithms for problems across so many domains sounds like “core computer science and engineering”
Undirected Graphs

• In *undirected graphs*, edges have no specific direction
 – Edges are always “two-way”

![Diagram of undirected graph with vertices A, B, C, D and edges connecting A to B, A to C, and C to D.]

• Thus, \((u, v) \in E\) implies \((v, u) \in E\).
 – Only one of these edges needs to be in the set; the other is implicit

• **Degree** of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices
Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction.

Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).

- Let \((u, v) \in E\) mean \(u \rightarrow v\).
- Call \(u\) the source and \(v\) the destination.

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination.
- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source.
Self-edges, connectedness

- A self-edge a.k.a. a loop is an edge of the form (u, u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)

- A node can have a degree / in-degree / out-degree of zero

- A graph does not have to be connected (In an undirected graph, this means we can follow edges from any node to every other node), even if every node has non-zero degree
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$
Examples again

Which would use **directed edges**? Which would have **self-edges**? Which could have **0-degree nodes**?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …
Weighted graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many don’t
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …
Paths and Cycles

- A path is a list of vertices $[v_0, v_1, \ldots, v_n]$ such that $(v_i, v_{i+1}) \in E$ for all $0 \leq i < n$. Say “a path from v_0 to v_n”

- A cycle is a path that begins and ends at the same node ($v_0 == v_n$)

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

- **Path length:** Number of edges in a path (also called “unweighted cost”)
- **Path cost:** Sum of the weights of each edge

Example where:

P = [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]

\[
\text{length}(P) = 4 \\
\text{cost}(P) = 9.5
\]
Paths/cycles in directed graphs

Example:

Is there a **path** from A to D?

Does the graph contain any **cycles**?
Undirected graph connectivity

- An undirected graph is **connected** if for all pairs of vertices \(u, v \), there exists a **path** from \(u \) to \(v \).

![Connected graph and Disconnected graph diagrams]

- An undirected graph is **complete**, a.k.a. **fully connected** if for all pairs of vertices \(u, v \), there exists an **edge** from \(u \) to \(v \).

(plus self edges)
Directed graph connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex *ignoring direction of edges*.

- A **complete** a.k.a. **fully connected** directed graph has an edge from every vertex to every other vertex *plus self edges*.
Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• …
Trees as graphs

When talking about graphs, we say a tree is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?...
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children

- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
Rooted Trees (Another example)

• We are more accustomed to rooted trees where:
 – We identify a unique ("special") root
 – We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
Directed acyclic graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

- Every DAG is a directed graph
 - But not every directed graph is a DAG:
Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- …
Density / sparsity

• Recall: In an undirected graph, $0 \leq |E| < |V|^2$
• Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
• So for any graph, $|E|$ is $O(|V|^2)$
• One more fact: If an undirected graph is connected, then $|E| \geq |V|-1$
• Because $|E|$ is often much smaller than its maximum size, we do not always approximate as $|E|$ as $O(|V|^2)$
 – This is a correct bound, it just is often not tight
 – If it is tight, i.e., $|E|$ is $\Theta(|V|^2)$ we say the graph is dense
 • More sloppily, dense means “lots of edges”
 – If $|E|$ is $O(|V|)$ we say the graph is sparse
 • More sloppily, sparse means “most (possible) edges missing”
What is the Data Structure?

• So graphs are really useful for lots of data and questions
 – For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:
 – Properties of the graph (e.g., dense versus sparse)
 – The common queries (e.g., “is \((u, v)\) an edge?” versus “what are the neighbors of node \(u\)?”)

• So we’ll discuss the two standard graph representations
 – Adjacency Matrix and Adjacency List
 – Different trade-offs, particularly time versus space
Adjacency matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v] == \text{true}$ means there is an edge from u to v

\[
\begin{array}{cccc}
 A & B & C & D \\
 A & F & T & F & F \\
 B & T & F & F & F \\
 C & F & T & F & T \\
 D & F & F & F & F \\
\end{array} \]
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges:
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- How will the adjacency matrix vary for an *undirected graph*?
- How can we adapt the representation for *weighted graphs*?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges:
 - Get all of a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for dense or sparse graphs?
Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Can save roughly $\frac{1}{2}$ the space
 - But may slow down operations in languages with “proper” 2D arrays (not Java, which has only arrays of arrays)
 - How would you “get all neighbors”?

- Lists: Each edge in two lists to support efficient “get all neighbors”

Example:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Diagram:

```
  A   B   C   D
  O---O---O---O
    |   |   |   |
    A  B  C  D
```

```
A -> B /  
B -> A   C / 
C -> D   B /
D -> C   /
```
Which is better?

Graphs are often sparse:

- Streets form grids
 - every corner is not connected to every other corner
- Airlines rarely fly to all possible cities
 - or if they do it is to/from a hub rather than directly to/from all small cities to other small cities

Adjacency lists should generally be your default choice

- Slower performance compensated by greater space savings
Next…

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

- **Shortest paths**: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path